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Abstract 

Automatic Language Identification 

with Sequences of 

Language-Independent Phoneme Clusters 

Kay Margarethe Berkling, Ph.D. 

Oregon Graduate Institute of Science & Technology, 1996 

Supervising Professor: Etienne Barnard 

Automatic Language Identification involves analyzing language-specific features in 

speech to determine the language of an utterance without regard to topic, speaker or length 

of speech. Although much progress has been made in recent years, language identification 

systems have not been built on detailed underlying theory or linguistically meaningful 

design criteria. This thesis is motivated by the belief that features used to discriminate 

between languages should be linguistically sound; the result is a unique combination of 

design, theory and implementation. 

In this thesis a "word-spotting" algorithm is introduced motivated by a perceptual 

study [86] reporting that human subjects use language-dependent phonemes and short 

sequences to identify languages. In order to find an optimal set of phoneme-like tokens to 

represent speech in a linguistically meaningful way, a mathematical model of the discrimi- 

nation between two languages is developed. This model permits the automatic design of a 

token representation of speech by selecting a list of discriminating "words" in a data-driven 

manner. The resulting system has the flexibility to automatically take into account the 

inherent structure of the languages to be discriminated. A second mathematical model is 

xiv 



developed to measure the impact of inaccurate automatic alignment of tokens on language 

discrimination. This model indicates why some algorithms aiming to compensate for these 

inaccuracies have not been successful. The theoretical models and the "word"-spotting 

algorithm have been implemented and validated on both generated and real-world speech 

data. 

This dissertation makes several significant contributions: the design of a simple and 

linguistically sound language-identification module; a flexible automatic feature extraction 

algorithm; a mathematical model to estimate the discriminability of two languages; and a 

mathematical model to capture the impact of inaccurate alignment on the discriminability 

of two languages. 

xv 



Chapter 1 

Introduction 

In this thesis we address the issue of complexity in automatic language identification 

systems. Automatic language identification (ALI) refers to a computer classifying the 

language of human speech input independent of speaker and topic. Classification is per- 

formed based on a set of features which are extracted from a tokenized representation of 

speech. 

Token sets used for speech representation are usually phonemes which are defined by 

linguists to cover the complete inventory of speech sounds within a given language. Since 

phonemes are by definition language dependent, the difficulty of designing a linguistically 

sound language identification system lies in finding a token set which is valid across lan- 

guages. Today's state-of-the-art language identification systems are typically constructed 

by using language dependent speech recognition systems as basic building blocks. Such 

a construction however can result in the high complexity due to the detailed modeling 

of phonemes from a potentially large number of languages. Reducing this complexity by 

modeling phonemes from a partial set of languages has in the past resulted in a speech 

representation with little linguistic meaning. 

We introduce a new approach to automatic language identification, which does not 

combine language-dependent phoneme models but creates a single set of clustered phonemes 

valid across languages. We address the issue of complexity by creating a mathematical 

model which allows us to maximally cluster phonemes without losing the discriminat- 

ing information. We thereby retain the ability to express speech across languages in a 

linguistically sound manner. 

Sequences of the tokens form the structural features used to identify a language. Most 



existing systems predetermine the type (length of sequence) of structural feature to be used 

regardless of the languages to be classified. At one extreme a limited number of frequently 

occurring language dependent phonemes or phoneme pairs can be used to discriminate 

languages. At the other extreme, structural features consists of a large (theoretically 

infinite) number of relatively rare and long sequences which make up a language. 

We believe that the type of structural feature to be used depends on the languages 

to be identified. Our approach is to customize the feature while keeping the complexity 

at a minimum. In this thesis we develop a statistically based feature representation and 

selection. As a result we show that discriminant information in a system of low complexity 

(small number of features) is contained in sequences of short length but not restricted to 

single- or pairwise phoneme occurrences. 

In this chapter, Section 1.1, will illustrate how a language identification system is 

typically constructed. In Section 1.2, we will introduce a new approach to automatic 

language identification. 

1.1    From Speech Recognition to Language Identification 

Before approaching the subject of language identification, we look at the process of 

language-dependent speech recognition. Speech is generally recognized in the four stages 

depicted in Figure 1.1. The acoustic-phonetic function forms the initial stage of speech 

recognition. It is assumed that a given phrase uttered by different speakers and at different 

speeds can be maped into the same discrete sequence of tokens. The function can be more 

or less precise to increase or decrease the speaker dependent variations in the mapping. An 

imprecise function is therefore more accurate but may not capture the information needed 

to understand the speech. Thus there exists a tradeoff between accuracy and precision. 

During the alignment of speech, the chosen acoustic-phonetic function is used to repre- 

sent the speech with a string of tokens. The set of tokens to be mapped, usually phonemes, 

cover the sounds within a language in order to understand the meaning of what has been 

said. A token set is designed with respect to the necessary detail of representation re- 

quired by the application.  A word spotter for the word "I", for example, would require 



only two tokens: "F, and not-"F. On the other hand a full set of phonemes is necessary 

for understanding the speech. 

Detailed structural features can be extracted in the third stage to the degree to which 

the discrete representation reflects the speech properties needed by the application. These 

features will be used to understand speech or identify the language of the speech. This 

application dictates the speech representation and can be used to increase or decrease the 

complexity of each stage in Figure 1.1. The process of choosing a set of tokens to represent 

speech, aligning it, and extracting structural features in order to identify a languages will 

be the focus of our discussion throughout the remainder of this section. 

Language 

Language Identification 

Features 

Structural Feature  Extraction 

Tokenized Speech 

Alignment of Speech 

Phonetic Signal Representation 

Acoustic-Phonetic 
Function 

Speech Waveform 

Figure 1.1: Basic processing components of a general speech recognition system. 



1.1.1    Acoustic-Phonetic Function 

As illustrated in Figure 1.1, the process of identifying a language based on the speech 

waveform consists of four main steps. The first process of the language identification 

system is to transform continuous speech into a sequence of discrete events. An utterance 

of human speech is depicted as a sampled wave form in Figure 1.2. The speech signal 

reflects the vocal-tract configuration of the speaker. It varies slowly over short periods of 

time during steady-state vocal-tract configurations ( < 100 ms) and changes over longer 

periods of time as required during production of different speech sounds (> 100 ms). 

Speech waveforms can thus be segmented into slowly varying sections. The resulting set 

of segmented intervals of actual sounds are called phones and correspond directly to the 

different sounds in the language of the speaker. 

,0ms       ,100ms     ,200ns     ,30Oas 

Figure 1.2: Sample wave file of the spoken word "Language" 

Phones, in turn, can be mapped into phonemes, the smallest units of speech. Phonemes 

carry the minimal information needed to distinguish between the words in a given lan- 

guage. Thus, a single phoneme may encapsulate different pronunciations or allophones 

which are allowed within a language without changing the meaning of a word in which it 

occurs. An example of this would be the sentence "Boston Harvard Square" uttered by 

a bostonian only hinting at the /r/. The same sentence produced in the southern dialect 

of American English would put heavy emphasis on a retroflexed pronounciation of the 

/r/. Both utterances denote the same sentence. The set of all phonemes occurring in 

one language is then by definition language dependent. Speech recognition algorithms, 

using an acoustic-phonetic approach, assume that acoustic patterns can be modeled by 

a function which is able to map the speech wave to a corresponding phoneme in a given 



language. 

1.1.2    Alignment of Speech 

In Figure 1.3 we can see that the second process towards identifying the language of a 

given speech wave consists of deriving a set of time aligned discrete events to represent 

the speech. The description of one possible implementation of the alignment process will 

be given in more detail in Chapter 5.2. Aligning the continuous speech signal to obtain 

a sequence of discrete events is the first step towards capturing higher level structural 

features. It is therefore important to find a set of speech units that captures the amount of 

appropriate detail for a given application. Figure 1.3 depicts different methods of aligning 

speech in multiple languages. It displays the spectrum of representing speech with broad 

categories, such as vowels or consonants, at one extreme, or phonemes at the other extreme. 

The phoneme-clusters which are introduced in this thesis form a compromise between the 

two extremes - language-specific phonemes and language-independent broad categories as 

depicted in Figure 1.3. By clustering phonemes across all languages in the system, we 

believe that we have gained a linguistically sound way of expressing multilingual speech 

while maintaining discriminating information. 

At one extreme, we distinguish three different ways of using phonemes to represent 

speech. The state-of-the-art systems (Section 2.1.1) capture speech sounds of all languages 

in an ALI system by constructing an array of language-dependent phoneme recognizers 

and aligning the incoming utterance of an unknown language in terms of each of the 

language-dependent phonemes in a "parallel approach". Phonemes from each language 

are therefore used in a cross-language manner. Envisioning a system with ten languages, 

one might consider decoding the speech in terms of only a subset of these front ends. We 

are now mapping phonemes across languages with the hope of sufficiently covering the 

space of all occurring speech sounds. In the extreme, phonemes from a single language are 

mapped across all the languages in the system. Such a system may not be linguistically 

sound, if it discrimininate between languages whose phonemes are not represented in 

the final system. As an example, let us assume an English utterance is aligned with 

Japanese phonemes. While English distinguishes between the two phonemes /!/ and /r/, 
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Figure 1.3: Multi-lingual Speech Representation 

the Japanese phoneme set will treat both sounds as allophones. This example shows that 

a language dependent alignment may not be sufficiently complex to capture the sound 

inventory for several languages. 

Alternate methods express multi-lingual speech by creating a supra-lingual speech unit. 

Creating broad-categories, for example, one can express nasals such as /ng/, /n/, or /m/ 

in both German and English within a single category. Some languages may differ based 

on broad categories and their sequences [80]. For example, German, which has sequences 

of consonants is distinguished from Japanese due to its inherent structure where each 

consonant is followed by a vowel (consonant-vowel structure) [19]. While broad categories 

are a linguistically sound representation of multilingual speech (broad categories are valid 

across languages) they generally discard information which may be useful in distinguish 

languages. A review of these approaches is presented in Section 2.1. 

In the previous section we defined the term phoneme as a language dependent speech 



unit. Thus, in order to create a linguistically meaningful speech unit across languages, we 

introduce phoneme clusters derived from the superset of all phonemes. While phonemes 

are very precise at expressing speech, the accuracy with which they can be correctly classi- 

fied is much lower compared to broad categories. For example it is much easier to recognize 

the category vowel than to identify the precisely whether /a/, /e/, or /o/ was said. On the 

other hand, even though vowels can be recognized with higher accuracy, more precision 

may be necessary in order to discriminate languages. By clustering vowels, we achieve 

a compromise between high precision and accuracy by modeling only the discriminating 

information while creating a speech unit which is able to express multilingual speech. 

1.1.3 Structural Feature Extraction 

After the continuous speech signal is decoded into a sequence of discrete events, the 

next subsystem of a speech recognition system generally captures higher level structural 

features as depicted in Figure 1.4. Language dependent structural properties of speech 

include phonotactics (which refers to the allowed sequence of phonemes or broad categories 

within a language). Similarly, syllables (the minimal unit of organization for a sequence 

of speech sounds, acting as a unit of rhythm: Uuually containg a vowel as the nucleus), 

sub-words and words carry such structural information. Their occurrence can either be 

language specific or alternatively vary statistically across languages. The level of detail 

at which the discrete events are represented in the speech signal influences our ability to 

extract meaningful structural features. This in turn directly affects the performance of the 

entire system. Section 2.2 will review approaches which incorporate structural features 

into language identification systems. 

1.1.4 Language Identification 

Language identification is often used as the front end to a language-specific speech- 

recognition system. Such a front end is not responsible for understanding the speech. 

It is therefore not necessary to decode the segmented speech into a string of words and 

subsequently their meaning as is common in speech-recognition systems. However, we be- 

lieve that understanding the utterance may ultimately be the key to robustness in language 
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Figure 1.4:  The quality of structural features used by the application depends on the speech 
representation. 

identification [86]. For this reason it is important to reduce the complexity of language 

identification systems in each of its parts to facilitate growth in the number information 

sources used by the system. 

While common approaches to language identification depend only on phoneme and 

word occurrences, understanding an utterance entails extracting all available features in- 

cluding higher-level language structures. Language-dependent grammars for example de- 

note the systematic structure of a language and capture both the occurrence of language- 

dependent words as well as their language-specific order within an utterance. Such lan- 

guage models may ultimately disambiguate recognized languages/words/phonemes and 

thereby improve performance. 

While machines still have limited success in incorporating even the most basic infor- 

mation sources efficiently, the hope for the future is to approximate the human process 

of including as many information sources as possible.   If implemented in all its detail, 



a speech-recognition system using all these information sources would require immense 

complexity. Using the parallel approach to language identification, by decoding the ut- 

terance with several language-specific phoneme recognizers, and incorporating all possible 

information sources in parallel, would at the least multiply the complexity by the number 

of languages in the system. In arguing that this complexity is unnecessary, this research 

proposes reduced modeling of certain components for a language identification system in 

order to facilitate the future addition of higher-level information sources. 

1.2    A New Approach 

The application of the speech recognition system dictates the necessary detail to be mod- 

eled in the preceding stages (structural feature extraction and speech representation). Not 

modeling more detail than necessary is the premise used to simplify the complexity at each 

stage in our language identification system while retaining a linguistically sound speech 

representation and feature set. Structural features are used to discriminate languages. 

Languages differ in various ways: while some languages may be identified based on a sin- 

gle phoneme, others may be discriminated based only on short words. By not placing any 

restrictions on the type of features, our system is flexible enough to extract linguistically 

sound features. 

The choice of speech representation is important in order to capture the discriminating 

information contained in the speech and determines the effectiveness of the structural 

features for the application. While realizing the importance of precise modeling, we also 

realize that not all information is equally important. By selectively modeling information 

which is needed by the application we can benefit from the tradeoff between precision vs. 

accuracy. In this section we propose a new method that combines a linguistically sound 

approach to representing speech with statistical methods of extracting language-specific 

structural features. 

After outlining our linguistic reasoning in Section 1.2.1, we motivate the chosen speech 

representation in Section 1.2.2 and show how we propose to capture structural differences 
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between languages in order to identify the language of an incoming utterance in Sec- 

tion 1.2.3. Section 1.2.4 outlines the contributions of this thesis. 

1.2.1    Linguistic Motivation 

The key to a successful implementation of a language identification system which captures 

language dependent features is twofold. First, a sound representation of speech units must 

be able to capture the language specific information in a representation customized to the 

targeted languages. Second, a contrastive feature analysis must capture the differences 

between languages. 

Languages differ from each other in different ways. While some languages may have 

a similar phoneme inventory (for instance Spanish and Japanese), they may differ at the 

syllable level. For example, Japanese has a strict consonant-vowel structure while Spanish 

does allow for consonant clusters at a higher frequency. Root languages such as Chinese 

and Vietnamese are invariable at the word level, while inflectional languages such as the 

European languages signal grammatical relationships with word final affixes that are short 

and frequent. We therefore expect that inflectional languages can in part be discriminated 

based on shorter sequences while the root languages can be discriminated based on longer 

sequences. Not only is the length of the sequence important for discrimination but also 

the level of detail in which the speech units are represented. For example, both German 

and English are Germanic languages and are therefore similar with respect to allowing 

consonant clusters, frequency of vowels and grammatical affixes. In such a case detailed 

phoneme representation of the speech is necessary in order to capture the differences in 

pronunciation of language specific fricatives, such as the unvoiced dental fricative /th/ in 

the English word 'Bath' or the uvular fricative /ch/ in the German word 'Bach'. However, 

some languages, may discriminate based on a much higher level of speech representation. 

For example, both Chinese and Japanese have a highly constrained syllable structure 

which can be discriminated at the broad category level. 

In Figure 1.5 depicts the four stages of language identification of the input speech wave. 

In the second stage, the wave form is aligned with a chosen set of speech units. Phoneme 

clusters are chosen over phonemes and broad categories. This representation allow us to 
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Figure 1.5: Modules of the LID System chosen for this thesis 

capture the language discriminating information while reducing the complexity of phoneme 

modeling and increasing the information from using strictly broad categories. The arrows 

in Figure 1.5 indicate the modules that are chosen in order to allow both a customized 

representation and a contrastive feature analysis. One should note that at the level of 

structural feature extraction this design allows for the necessary flexibility to adapt to 

the inherent structure of any type of language, while expressing the structure in a flexible 

phoneme-like representation. 

1.2.2    Multi-lingual Speech Representation 

Some of the best language identification systems today achieve their performance based 

on phonemes as the unit of speech. We believe that this amount of detailed modeling may 

not be necessary [11, 9]. The issue is to show that it is feasible to replace the parallel 

approach, which models all the phonemes in all the languages, with a more conservative 
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speech representation. There are a number of reasons why one would prefer to use a less 

detailed distinction between different speech units, including the following: 

• With a growing number of languages, the utterance is decoded in parallel by a larger 

number of recognizers, thereby increasing the computational cost and decreasing the 

classification accuracy. 

• Decreasing the complexity by choosing a subset of phoneme recognizers to represent 

all languages in the system may arbitrarily not model important phonemic distinc- 

tions. 

• With an increasing number of languages, the number of phonemes to recognize 

proliferates, thereby making it difficult to train a single phoneme recognizer discrim- 

inatively across languages. 

• The absence of a common phoneme set does not allow cross-lingual statistical anal- 

ysis of linguistically meaningful phoneme sequences. 

The issue is to find the appropriate set of speech units for discriminative training. It 

should capture sufficient detail to capture language specific sounds as well as coverage of 

the full range of speech sounds from all languages in the system. For this purpose we 

distinguish between two types of phonemes: 

Mono-phonemes    Phonemes occurring in one language 

Poly-phonemes       Phonemes similar across languages 

As was shown in [8], most of the language dependent information is concentrated 

in the mono-phonemes and not in the poly-phonemes 1. Therefore, there is a high de- 

gree of redundancy in recognizing speech at the phoneme level with respect to the set of 

poly-phonemes. In Chapter 5 we uncover this redundancy, by first clustering phonemes 

across all languages in the system, and then remove it by building a single front end to 

discriminate between these phoneme clusters. 



13 

LANGUAGE  DEPENDENT 
Apply Linguistic Knowledge 

German vs. English 

Vocabulary 

' choice of sequences 

Speech 
Unit 

Recognition 

Speech 
Unit 

Alignment 

Sequence 

Spotting 

Speech Signal Signal 
Representation 

Tokenized 
Speech 

Features 

Language 

Identification 

Language 

LANGUAGE  INDEPENDENT 

Figure 1.6: Modules of the LID System chosen for this thesis: The system consists of a phoneme 
recognizer, followed by an automatic alignment of the speech with the recognized phonemes. Fi- 
nally, features are derived based on the sequences discriminating German and English. 

1.2.3    Language Identification 

In order to identify the language of an incoming utterance it is passed through a single 

multi-lingual speech recognizer which aligns speech from all languages with a common set 

of phoneme clusters. A common set of speech units across languages allows us to apply a 

single set of structural information sources. Using statistical modeling, we automatically 

derive discriminating sequences of any length. Each language is then represented by a 

"Vocabulary" - a set of sequences capturing both its inherent and discriminating structure. 

Language identification is performed by matching the vocabulary statistics against the 

words spotted in the incoming speech. The resulting system as shown in Figure 1.6. is 

implemented to discriminate between English and German as discussed in Chapter 5 and 

Appendix E. 

By ranking features through statistical analysis according to their discriminating power, 

'Terms coined by Paul Dalsgaard, University of Aalborg, Denmark 
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it is possible to construct a minimally sufficient set of features for discriminating languages. 

Through quantitative analysis, by studying the frequency and distribution of linguistic 

units, regularities governing the structure of language as well the language discriminant 

features have been elucidated in this manner. This in turn allowed us to reduce the number 

of features chosen at this level of analysis thereby reducing the complexity in a systematic 

manner. Chapter 3 will address the development of this theory. 

In order to handle within-language variability such as dialects, speaker differences, 

and bad phoneme recognition, Chapter 4 will present the theory behind a method for 

extending the "vocabulary" matching algorithm in a structured manner to capture these 

variablities without losing discriminability between languages. Appendix E will address 

the practical implementation of this theory. 

1.2.4    Contribution 

The key contributions of this thesis are threefold: we have combined linguistic design with 

theoretical derivations and subsequent system implementation. 

1. Original and linguistically sound approach to language identification: 

• Representation of multilingual speech with speech units valid across langugages. 

• Flexible feature extraction because languages differ in different ways. 

2. Theoretical derivations: 

• Introduction of a systematic method for deriving a multilingual set of speech 

units and for selecting structural features by estimating the discrimination ca- 

pability of a given system design. For this purpose, a mathematical model is 

developed to approximate the theoretical discriminability of two classes repre- 

sented by streams of tokens. 

• Development of a mathematical model to understand the impact of inaccurate 

alignment on class discriminability. This thesis introduces an argument explain- 

ing why using inexact sequence matching to improve language identification 
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systems has presented a difficult problem to researchers. The implementation 

and application to multilingual telephone speech verifies the theoretical results. 

3. Implementation: 

• Implementation of the developed theory and verification on automatically gen- 

erated data. 

• Implementation of a language identification module tested on multilingual tele- 

phone speech. 



Chapter 2 

Previous Work 

A recent review [81] of language identification contains a detailed literature review of 

historical and present approaches to language identification. In addition, Muthusamy [80] 

presents thorough discussions of the subject in his thesis. We will therefore limit our 

literature review to detailing the modern approaches, and evaluating them with respect 

to the approach taken in this thesis. 

Related work with respect to speech representation will be addressed in Section 2.1. 

The speech representation used in language identification systems determines the detail 

with which the structural features are extracted. Research has concentrated on deter- 

mining a "good" representation with respect to performance (correct discrimination of 

languages), representing previously unseen languages, dealing with unlabeled data, and 

extending the number of languages in the system without loss in performance. Early trends 

in this research area have chosen a language-independent speech representation (broad cat- 

egories, such as vowel or consonant) which requires little labeled data and is valid across 

languages. The general tendency in recent years has been towards fine-phonemic modeling 

of speech resulting in much better performance. Such representation is highly language 

dependent and requires hand-labeled training data. Research now focuses on using selec- 

tively detailed speech modeling in order to reduce the complexity of larger systems and 

generalizing to unlabeled data. 

The related work in structural feature extraction as defined by Figure 2.1 will be 

addressed in Section 2.2. The set of structural features used by a system can range 

from simply using phonemes, whose occurrence frequency in the speech indicates the 

language in which it was spoken, to a large inventory of relatively rare language-dependent 

16 
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words, whose simple occurrences uniquely identify a language. There is a tradeoff in 

complexity here. While the simple phonemes are garuanteed to occur in a given amount 

of speech, that same speech may contain a word from the large-vocabulary system only 

if the corresponding set of words is large enough. The latter system therefore requires a 

large set of features. Research in recent years focuses on this sort of tradeoff while keeping 

in mind extensibility to an increasing number of languages ( 20 and more ) without loss 

in performance. 

Section 2.3 will discuss related research areas. While our system focuses on speech 

representation derived from phoneme labels we also present methods that depend on 

spectral features and pitch. In addition, text based systems use some of the same features 

used in identifying speech and are therefore of interest. We can also learn from perceptual 

studies and compare our features to those used by humans to identify languages. 

2.1    Speech Representation 

In recent years a number of studies have been performed to find the best speech unit to 

represent multilingual speech. Systems based on language independent broad categories 

such as vowels and consonants are easily extensible and generalize to new languages by 

their lack of detailed information. For this very reason, it was found that detailed phoneme 

representation captures more language-dependent information and increases language dis- 

criminability. However, as the number of languages increases, detailed modeling becomes 

difficult. The research presented in this section addressed the tradeoff between com- 

plexity and performance. We review the general trend from broad category to detailed 

phoneme representation and indicate another trend from fine phoneme modeling to clus- 

tered phonemes as a possible compromise between detailed modeling and broad category 

speech representation. 

2.1.1    From Broad Category to Fine Phonemic Modeling 

Increasing the amount of linguistic knowledge contained in the representation of the speech 

to the recognizers is one of the improvements which allowed the most significant advances 
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Figure 2.1: Information Sources Used in Multi-lingual Speech Recognition Systems 

in language identification systems. In Muthusamy [82], going from acoustic features to 

broad categories to phonemes shows large improvements in the system with each step. 

Work by Zissman et al. and Lamel et al. [115, 117, 61] confirms this issue by moving 

from ergodic Hidden Markov Models (HMMs) trained on acoustic input to broad-category 

trained language models to phonemically trained language models. 

Virtually all the best language-identification systems today use fine phoneme recogni- 

tion and language modeling ( the exception is the system by K.P.Li based on the spectral 

representation of speech [68], discussed in Section 2.3). These systems [108, 50, 117, 61] 

usually have a considerable degree of complexity. Complexity and language identification 

accuracy can be increased by adding models for additional variabilities such as gender and 

phoneme duration [60, 61, 116]. I briefly outline some of the important systems that fall 
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into this category. 

Lincoln Lab System (1994) [115, 117,116] HMM-based phoneme recognizers for each 

of the languages in the system are trained using the phonetically labeled training set from 

the OGI-TS database. The training speech for each of the N languages is passed through 

each of the L front end phoneme recognizers, where N > L. From this stream of phonemes 

the language model for each of the N languages is trained using bi-gram language models 

to take phonotactics into consideration. The final likelihood score for each language for 

each utterance is calculated as the average of the individual log likelihoods emanating 

from the corresponding language models associated with each channel, see Fig. 2.2. 
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Figure 2.2: Language Identification Using Phoneme Recognition and Phonotactic Language Mod- 
eling 

To improve this system, it is extended to model duration and gender dependent vari- 

abilities. 



20 

OGI System (1995) [112, 107, 108, 111, 110] It is believed that increasing the number 

of parameters increases the variability of the system to the extent that it does not general- 

ize well to previously unseen data. This particular improved system does not increase the 

number of parameters like the previously mentioned system, but instead seeks to optimize 

existing parameters. 

Starting with a system similar to Zissman's which runs phone recognizers in parallel 

and trains language dependent models based on each of the phone model outputs, this 

system contains several important optimizations. Firstly, the language models train not 

only on the traditional forward bigram probability but also on a backward right-context 

bigram probability. Secondly, all parameters in the language models are optimized with 

respect to the squared classification error E: 

E=(ST- SM? 

where ST is the output score of the target language and SM is the highest output score 

not necessarily corresponding to the target language. 

Other Systems in this Category Lamel et al. [61] identify a set of non-linguistic 

speech features in order to model them separately in a recognition system. These include 

language, gender, speaker, dialect, speech disfluencies, etc. Ergodic HMMs are trained 

for each of the features and the models are run in parallel during the classification phase. 

Acoustic likelihoods are computed and the identified language corresponds to the highest 

scoring model. Lamel mentions that these ergodic HMMs can in theory be trained directly 

on acoustic data, without the necessity of labeling. In order to automatically label the 

data, bootstrapping is performed based on a small amount of hand-labeled data, by which 

the recognizer automatically aligns data using a common set of labels derived from a single 

language in which the data is labeled. In this manner, Lamel also uses a mapped set of 

phonemes similar to Zissman's. Two problems with this approach may be the lack of 

labeled data in some practical situations, and the reduced training data for each of the 

models. 

In order to reduce the complexity, several groups have tried to map phonemes across 
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languages by representing larger sets of languages in terms of phonemes taken from only a 

subset of the languages [117, 108]. Extensibility of such systems to a larger set of languages 

is not clear, and the somewhat arbitrary reduction to phonemes in a specific subset of lan- 

guages to reduce complexity may no longer be effective as the systems expand. (However, 

systems today show no degradation in performance when using mapped phonemes for the 

present tasks). 

These systems incorporate very large degrees of statistical linguistic knowledge em- 

bedded in the HMMs of phoneme-models and language-models. However, they have not 

provided much meaningful information about language differences, since those differences 

are encoded in a large number of parameters. As described in Section 1.1.1, phonemes are 

not valid across languages. Therefore, expressing one language in terms of the phonemes 

from another is not linguistically sound. Training language-dependent phoneme recogniz- 

ers also does not allow discriminant training between phonemes across languages. Most 

importantly, it is not apparent how these systems will extend to a larger number of lan- 

guages. 

2.1.2    From Fine Phonemic Models to Clustered Phoneme Modeling 

The general tendency to move from broad category to fine phonemic modeling, has been 

supplemented by research which determined that modeling of all phonemes may not be 

necessary. Dalsgaard [25], Berkling [8] and Zissman [116] language dependent phonemes, 

called mono-phonemes or key-phones have been shown to contain most of the language dis- 

criminating information. Dalsgaard uses this knowledge to build a language identification 

system. 

Dalsgaard distinguishes between language dependent phonemes (mono-phones) and 

language independent phonemes (poly-phones) [25]. By using the similarity of acoustic 

phonetic features or data-driven clustering (employing a similarity measure based on a 

global confusion matrix [2, 1]), he either clusters phonemes across languages or identifies 

them as mono-phonemes. This establishes a super set of labels valid across all languages 

to label a multilingual database used for training phonemic recognizers [6]. He thus is 

able to increase the training data for phoneme recognizers by merging poly-phones across 
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returns a likelihood score. The maximum score identifies the language of the speech. 

languages and improving his phoneme recognition in each of the languages. The main 

result is the ability to substitute poly-phonemes for their language dependent counterparts 

without losing recognition accuracy on the average. 

Dalsgaard employs the mono-phones for language identification by modeling each lan- 

guage in terms of the corresponding mono-phones and the union of all poly-phones across 

all languages [26]. A grammarless Viterbi search returns an automatically derived align- 

ment of an incoming utterance by using each of the language dependent models. A 

post-phoneme weighting algorithm emphasizes mono-phoneme occurrences and returns 

a probability score associated with the alignment. The language model returning the 

highest score is the language identified. Figure 2.3 shows the system identifying the four 
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European languages (British English, Danish, German and Italian). 

This system is based on a minimally clustered common set of labels across languages. 

In other words, if a phoneme /b/ is realized in all four languages in a similar enough 

manner, /b/ becomes a poly-phoneme merging training data from all the languages. In 

contrast, maximal clustering would promote clustering of phonemes not only across but 

also within a language. The similarity measure between phonemes to be clustered is re- 

laxed to allow for example /p/ and /b/ to merge. This is a step leading back towards 

broad category speech representation. The reasoning behind such a merge lies in recogniz- 

ing that the merge does not decrease language discriminating information while increasing 

training data for this phoneme class. Dalsgaard's use of poly-phonemes unioned across 

all languages can potentially increase the complexity when extending the system to say 

twenty or more of the world's languages. It is also not clear how many languages a 

poly-phoneme can represent. In fact, as the number of languages increases the number 

of poly-phonemes can still potentially grow unmanageably large. This may possibly be 

avoided by clustering maximally to increase training data while maintaining pairwise high 

language discriminability. 

2.2    Structural Feature Extraction 

Structural features of a language can be modeled at several levels. Using a simplified 

view, the first level might analyze speech in terms of phonemes, syllables, or word oc- 

curences. A second level would arrange the features in the first level by using a language 

dependent grammar with the goal of understanding the speech. Language identification 

typically differs from speech recognition by ignoring the second level in this simplified 

scheme. Modern systems are characterized by the type of feature that is extracted from 

the tokenized speech: features often correspond to bigram and trigram probabilities (cap- 

turing the phonology of a language) or a large set of words. In all systems the type of 

feature is predetermined independently of the language in the system. 
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2.2.1    Language Identification with Word/Sequence Spotting 

While the preceding examples have all revolved around phoneme recognition, other ap- 

proaches which extend the systems to include word level information also exist. While 

one can argue that the use of phone recognition is more efficient and task independent 

than the use of words, experience with monolingual recognition systems has shown that 

adding information at the word level can increase the robustness of a system with respect 

to language identification. The use of sub-word modeling maintains task independence. 

It is clear that incorporating word level recognition directly into the complex systems de- 

scribed above would be a formidable task. This section outlines some approaches taken 

where word or sub-word modeling is used. 

Triphone Modeling In Kadambe [50] the sub-word models consist of triphones. The 

assumption here is that triphones are optimal sub-word models regardless of the lan- 

guages in the system. In going from context independent to context dependent phoneme 

modeling, more linguistic knowledge can be applied and therefore an additional source of 

discriminative features is captured. Since this procedure decreases the amount of training 

data available per parameter, emphasis is put on increasing the available training data 

via usage of phoneme sequences derived from textual sources. Triphone probability is 

traditionally [48] estimated as follows: 

Pr{s3\si,s2) - A3/(s3|si, s2) + A2/(s3|s2) + Aa/(s3), 

where s,- denotes phoneme symbol i, /() denotes the frequency of occurrence, and A3, A2, 

and Ai are set to 1, 0, and 0 respectively. The probabilities Pr(s3|si, s2) are summed over 

the entire utterance using parallel language-dependent phoneme alignment. The language 

sybsystem with the highest log likelihood is chosen as the language of the input speech 

signal. 

This system is extended to include lexical modeling. In this case the incoming ut- 

terance is processed in parallel by language-dependent phone modeling followed by the 

corresponding language model and lexical model. Lexical models each contain 2000 words 

which are unique to that language. Good results are obtained due to the increased amount 
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of linguistic knowledge now in the system. While aligning languages A and B with the 

phoneme set from language A, the assumption is that language-specific characteristics are 

retained. The obtained results confirm this assumption. However the high complexity 

required of such a system may possibly be avoided, by selectively choosing sub-words 

according to their discriminating power between languages. 

Embedded Word Models of Frequent Words and Phrases The system by Ramesh 

and Roe [91] is based on the general design used in all of the above systems. Their word- 

spotting algorithm depends on the existence of specific words in the utterance to be 

classified since words are specified at the phoneme level. However, they hope to improve 

in some cases but never lose performance by adding word models. As pointed out earlier, 

one of the problems with using word spotting is that the process becomes topic dependent. 

2.2.2    Topic Identification with Word/Sequence Spotting 

Gish et al. approached language identification by applying algorithms developed originally 

for topic identification [32, 97, 74, 69] The solution is decomposed into three subtasks: (1) 

Keyword selection, (2) topic modeling, and (3) event detection. Keywords are selected 

based on a score which calculates how much each word contributes to the discrimination 

between any two given topics. The two distance measures used are the Kullback-Leibler 

distance and the mutual information measure. The topic is modeled by training a linear 

neural-network classifier based on occurrence counts of selected sequences taking advan- 

tage of occurrence dependencies among the selected keywords. An incoming utterance is 

classified by spotting for the given sequences and passing their occurrence frequency to the 

trained network and classifying according to maximal likelihood. In an incoming utterance 

the number of keyword events is estimated by summing the probability of a putative hit 

over all time. The probability at time t of having seen the keyword is calculated using the 

forward-backward scoring algorithm used in the Baum-Welch algorithm. Gish et al. [69] 

apply this algorithm to language identification by generating pseudo-word clusters. Each 

cluster is represented by the cluster centroid in the form of a single sequence of English 
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phonemes. Pseudo-word spotting is performed by finding inaccurate matches. The iden- 

tified language corresponds to the maximal log likelihood of matching the incoming string 

to two language models in the pairwise system. 

A similar approach to topic identification developed by Moore and Novell [88], is 

based on spotting for unusual and topic dependent words. These words tend to be long, 

so a word spotting algorithm needs to take into account errors due to both the errorful 

phoneme transcription and variations in ponunciations. This algorithm can be applied 

directly to language identification, even though, rather than looking for rare, long words 

one now selects frequent and mostly shorter pseudo-words. Other work closely related to 

this approach is recent work done at Ensigma relating to topic identification and language 

identification [16, 89, 105]. 

The above approaches are all related to one another and were developed during the 

same time as the sequence of research which forms the core of this thesis[82, 112, 8, 11, 9, 

10]. We also base language recognition on keyword selection, detection and classification. 

The language classification in this thesis is non-linear and the weighted keyword selection 

is based on the Bhattacharyya distance. Furthermore, sequences in [69] can only belong 

to one cluster, whereas for our system they can be associated with several clusters. Both 

algorithms were developed independently and the approaches differ significantly because, 

in addition, this thesis deals with the cross-lingual phoneme complexity. 

2.3    Related Methods 

When tokenizing the speech into a set of phoneme-based labels other information in the 

signal is often discarded. Pitch and spectral features fall into this category. Such features 

have been reported by subjects participating in perceptual studies in language identi- 

fication. It is therefore important to look at related research on human perception of 

languages. Other features identified by humans, relate to frequently occuring sequences 

of speech sounds that are typical for a given language as well as rare language dependent 

words. Such a feature set has been the subject of Section 2.2 and is also addressed in 

text-based speech recognition. 
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2.3.1    Language Identification without Phonemes 

Pitch can be an important feature when captured correctly. This has repeatedly been re- 

ported by human listeners during perceptual experiments [86]. While this is an important 

feature, we consider pitch to be an orthogonal issue; pitch (like other information sources 

of information such as grammar and speech understanding) can be added to existing 

systems. 

Pitch. Pitch has been shown by Itahashi to be useful when basing the identification 

exclusively on this feature [44, 45]. Itahashi uses prosody as the sole feature in his lan- 

guage identification system. He argues that fundamental frequency is more robust than 

segmental parameters in noisy environments. The most interesting result to note from this 

work is that he is able to distinguish between three Asian languages (Chinese, Korean, 

and Japanese) and three European languages (German, French, and English) by using 

parameters derived from ratios of occurrence frequencies of the pitch slopes. 

Hazen [38] on the other hand was less successful when using pitch, prosody, and dura- 

tion as a standalone system, or when adding pitch to his existing language identification 

systems. Hazen integrates the prosodic model with acoustic modeling, a phonological lan- 

guage model, and a-priori language probability. Optimal scaling factors are required to 

integrate these features appropriately. However, the effect of the prosodic model in terms 

of performance is not remarkable. 

Spectral Features. Since speaker-dependent differences can be greater than language- 

dependent differences, K.P. Li [68] models speech in speaker- and language-dependent 

dimensions. It can be shown that the variation in the spectral features between any pair 

of speakers is much larger than the language differences obtained from a single bilingual 

speaker. The key is to choose features that reduce the differences between two speak- 

ers in order to emphasize the language differences. Li uses a marking of syllabic nuclei 

which is both language- and speaker- independent. These syllabic nuclei are used to cal- 

culate features which represent a given utterance. Each language is represented by a set 

of representative speakers within that language. A minimum score refers to the minimal 
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distance between a test utterance and a reference utterance. The language corresponding 

to the matched speaker is returned. Alternatively, the language whose top N speakers 

match the incoming utterance best on the average can be returned. This may take care 

of dialect differences, channel changes, and outliers. Combining both methods results in 

best performance of the system. The main point to note in this approach is the language 

independent feature extraction in terms of the syllabic nuclei. In contrast, the phonemic 

approach and the probability of bigrams are inherently language dependent at the phone- 

mic level, and thus would create problems when performing the segmentation process in 

a language independent manner. 

2.3.2    Other Related Work 

Language identification is also related to research beyond the confines of conventional 

speech processing. We limit our discussion to perceptual studies and text-based systems. 

Perceptual Experiments Taking part in the perceptual experiment [86] had one of 

the greatest effects on the way we designed our system. Our own experience, and those 

of others voiced during interviews after the test, were that language identification was 

rarely based on long words but mostly on short syllables and phoneme occurrences. In 

addition, perceived tone of voice (harsh, deep, high) was important, as well as pitch and 

intonation across and within phones. Our clustering approach is based on the fact that 

there is only a small set of phonemes that are language dependent, and most other phones 

do not contribute significantly to the listener's language identification process unless they 

occur in specific context. 

Text-based Systems Ziegler [113] built a text-based language-identification system. 

He employs occurrence frequencies of signals ("subwords") much as we propose. Ideal 

properties of signals are high frequency and significant inter-language variability. Ziegler 

therefore uses a weighting for scoring which is based on signal detection according to lin- 

guistic significance. This is analogous to the clustering done in this thesis where emphasis 

is placed on such speech units which occur in one language only, or Dalsgaards emphasis 
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on mono-phonemes as described in Section 2.1.2. Ziegler's system is fast and accurate. 

He incorporates linguistic knowledge and most importantly is able to process a very large 

set of languages (150) with high accuracy in an efficient manner. 

Most current systems which employ lexical access as an additional module to the 

spoken language identification system rely on a critical mass of lexical words which tend 

to be long, numerous and rare across both length and topic of speech. Grammatical 

Morphemes on the other hand make up the shorter signals which are highly frequent within 

a language. The drawback of working with these types of signals for speech recognition 

systems is the high detection error rate and the risk of deletion of such subwords from 

speech. In addition, such short sounds may not be sufficiently distinguishable across 

languages due to the error rate of the recognizer. Such problems may however in part be 

overcome by training discriminatively on speech units across all languages and selecting 

sequences in the same manner. Most of the top discriminating sequences obtained by 

taking both recognition accuracy and their frequency of occurrence into account are still 

at the short morpheme level. 



Chapter 3 

Feature Modeling and Discrimination of 

Languages 

One of the main contributions of this thesis is the mathematical theory underlying the 

design of a system for language identification based on discriminating sequences of speech 

units. This theory will be the subject of the next two chapters. While Chapter 4 will 

explore the effects of misrecognitions on language discriminability, this chapter will de- 

rive the theoretical model of the features used for discrimination and an estimate of the 

language identification error. 

In order to enable a cross-lingual statistical analysis of sequences, used to discriminate 

languages, a set of speech units which is meaningful across languages is developed in 

Section 3.1. Speech units are derived by clustering phonemes across languages in order 

to minimize the necessary modeled detail without loosing the essential language specific 

information. Thus we take advantage of the tradeoff between modeling precision and 

accuracy of recognition. However, it is not feasible to implement a language identification 

system for each level of possible clustering. A theoretical estimate is therefore developed 

in order to determine whether a merge of phonemes across or within languages decreases 

the ability to discriminate between the languages in the system. 

Section 3.2 and Section 3.3 develop a method for estimating the discrimination error 

based on a given set of labels. Training data aligned at the maximal level of precision 

is automatically relabeled at the proposed clustered level. Based on this data, language 

dependent features can be modeled using a normal distribution. This model takes into 

account the mean occurrence frequency of a given feature, the variation across speakers 
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and the variation due to the length of the available speech. Using this model discrim- 

inating features can be extracted by estimating the Bayes' error due to two language 

dependent distributions. For each of the features the corresponding discrimination error 

is estimated and the top N features combined in order to indicate the performance of 

language discrimination based on this chosen set of speech representations. 

In an iterative process described in Section 3.4 the language identification error is esti- 

mated for successively clustered sets of phonemes in order to derive the optimal clusters, 

balancing accuracy vs. precision without losing language discriminating information. Sec- 

tion 3.5 tests the theoretical error estimate on automatically generated data in order to 

validate the use of an estimate for reducing the precision of the speech representation. 

3.1    Speech Unit derivation 

Clustering of phonemes across languages is based on the premise that not all phonemes 

are of equal importance to the language identification task. In fact, decreasing the number 

of phonemes to be recognized may improve the phoneme recognition accuracy which in 

turn may improve alignment (as described in Chapter 1.1) and, therefore, language iden- 

tification. We start from the set of all phonemes in the languages to recognize and cluster 

those to obtain the reduced set of phonemes. Construction of a clustering tree concerns 

both the order of merging as well as the termination of merging, i.e. the pruning of the 

tree. In our approach, merging relates to the closeness of two phoneme classes, whereas 

the pruning depends on the decrease in theoretically estimated language identification. 

Each merge of phoneme classes should satisfy the following two requirements 

1. The performance of the alignment should improve. 

2. Language classification should not deteriorate due to a merge. 

In order to guarantee an increase in performance of phoneme recognition, we chose 

the information theoretic mutual information distance measure. If we view the phoneme 

recognizer as a channel between the acoustics and the Viterbi search as described in 

Section 1.1.1, then we want this channel to carry a maximum amount of information 
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about the incoming signal.   Information is highest when the input is most difficult to 

guess, and the output correctly reflects the input. 

Let p(x\y) be the conditional probability of recognizing y as x after alignment. With 

p(y) denoting the prior probability of y, p(x) = Yly P(y)p{x\y)ls tne estimated occurrence 

frequency of x after alignment. The expected mutual information is then given by: 

MI = Y^p{y)p{x\y)ln 
x,y 

p(x\y) 
p(x) 

(3.1) 

Figure 3.1:  Effect of confusion matrix on expected mutual information, b and 1-b denote the 
prior probability of the two occurring classes, a is defined in Equation 3.2 
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To improve our understanding of this formula, we look at a two class problem. Here, the 

confusion matrix, denoting the probability of choosing x given y, is assumed to have the 

form: 

p(x\y) = 
a       1 — a 

1 — a      a 
(3.2) 

and the prior probabilities p(0) = b and p(l) = 1-6. Figure 3.1 shows the value of 

the mutual information measure as a function of a and b as given above. As can be 

seen, the expected mutual information is largest when the priors are evenly distributed 

and confusion between classes is low. Increasing the mutual information measure while 

merging phoneme classes therefore decreases confusion between the classes while keeping 

the priors distributed as evenly as possible. 

Order 
of 

Merging 

Phonemes 

Figure 3.2: Example clustering tree showing the sequence of merges from phonemes to phoneme 
clusters 

At each merge two phonemes are chosen which result in the maximal increase in the 

mutual information measure. Before merging phonemes accross languages, an estimate 

of the language identification error is obtained. Subsequent merging of phonemes are al- 

lowed with the constraint the original discriminability does not decrease. As an example, 

Figure 3.2 shows a sequence of merges as indicated by the numbers 1..3. Suppose merge 
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2 would have increased the estimated language classification error and is therefore disal- 

lowed, while merge number 3 does not affect language identification error. This means 

that merge 3 can potentially increase phoneme-cluster recognition performance and will 

be merged even though it is at a higher level than merge 2. The final pruned tree for this 

hypothetical example is indicated by the dashed line. 

3.2    Feature Modeling 

In order to know when a merger is disallowed, it is essential to have a good estimate 

of the language identification error. The discriminability of two languages is based on a 

model of the features used to identify a language. Based on such a model the similarity 

or dissimilarity of two languages can be quantified for each feature. These can then be 

sorted and selected accordingly. The features used in this thesis correspond to occurrence 

frequencies of sequences of labels. Such a sequence L can consist of one or more labels. 

Consider a string of labels which was hand labeled by a human, where L corresponds to 

the sequence to be examined and x is any other event: LxxxxLLxxLLL. In 

this example, the occurrence frequency of L, f(L), in the labeled string is 6/12 = .5. A 

language is represented by N native speakers. Each of the speakers' wave files have been 

handlabeled with a string of labels. The goal of this section is to model the frequency 

of occurrence of L in the set of labeled strings from one language. We assume a normal 

distribution of sequence occurrences within a language, and model the two parameters u 

and s (corresponding to the mean and standard deviation of the frequency distribution), 

of any sequence L in language C. We write 

f[L] e N(uc[L],8c[L]) (3.3) 

to signify that, across all utterances in language £, the occurrence frequency of string L 

is normally distributed with parameters uc[L] and sc[L]. 

In order to model the distribution of f[L] in a short sample we have to account for 
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# of strings 

mean frequency of occurrence 

Figure 3.3: Normal Distribution. 

all the factors that render it variable. We distinguish between inter- and intra-speaker 

variances. The former (si), is the variation due to different phoneme usage by different 

speakers and the variation due to speaker dependent phoneme recognition. The latter 

(s2), is a function of the length of a given speech sample. A phoneme sequence L is useful 

for discriminating between languages £; to the degree that these variabilities are smaller 

within a language than across languages. We now develop a model for the two random 

processes that determine the variance of occurrence frequency for a given sequence in a 

speech sample such that the final variance of word L in language £ is due to both si and 

S2- 

f e N(uc[L],8c[L]) 

= N(uc[L], j{slc[L? + s2c[m) 
(3.4) 

Variance Due to the Speaker: si2 The variance si2 is due to different speakers and 

different topics for various speech samples. This variance is also affected by the speaker 

dependent phoneme recognition. We assume normal distribution across all speakers here. 

This variance will be constant for all lengths of speech samples. Let N be the number of 

strings or speakers. Let fc[L]g denote the frequency of word L for speaker q in language C. 

The mean uc[L] — fa Y^Li fc[L]q is calculated in the conventional manner. The variance 
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slc[L]2 is then given as follows, 

slc[L]2 = Var(fc[L}) 

1     A , (3-5) 

9=1 

Variance Due to Length of Speech: s22 The variance s22 is due to the length of 

the given speech sample. We assume that the normal distribution arises as the limit of 

a binomial distribution. This variance will go to zero as time goes to infinity. To have 

a clearer understanding of why we chose a binomial distribution to model this variance, 

assume we are looking for a label or sequence L in a string of labels. At any time t, after 

having seen t segments, there exist t slots which can potentially be labeled L. Let x denote 

the number of segments that are labeled L , where (x < t). Then f is the normalized 

occurrence frequency of L at time t. Suppose further that u is the mean occurrence 

frequency of L as t —>■ oo. Then the variance of the occurrence frequency due to the short 

time sample t is: 

var(L) = E[{- - u)2] 

(3-6) 

x=0   l 

where p(x) is the probability that a specific sequence containing x sequences labeled L 

will be obtained, and n(x) is the total number of such sequences: 

p{x) = u*(l - uY-x (3-7) 
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and 

»(*)=(*) (3-8) 

The actual variance is therefore a weighted sum. 

EQ^I-«)^^-«)2 (3-9) 

Thus, expressing this formula in terms of the parameters already used in previous equa- 

tions, let N be the number of labeled strings corresponding to different utterances. uc[L] 

denotes the mean occurrence frequency of word L in language C. With t corresponding 

to the number of segments seen, the variance s2c[L]2 is given by, 

s2c[L?   =EU 
'^ 

V x I 
UC[L]*(I - ucmy-'ti - *c[L]f 

~ uc[Lf(l - ^[L])2e-^[i]ÜMpi 
(3.10) 

Ums2c[L]2 = 0 
t—J-oo 

Fig. 3.2 shows the rate at which s2c[L] converges to zero as time t goes to infinity and 

mean frequency 0 < uc[L] < 1. One sees that this component of the variance can be quite 

sizeable if u is much larger than zero. 

In Section 3.5 this model is validated on an artificial problem, and in Section 5.5.1 it 

is compared with the performance on real speech data. 
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Figure 3.4: s2 as a function of time (in segments) for different values of u. 

3.3    Feature Selection 

The classification error between two languages C\ and £2 due to a single sequence L can be 

estimated based on the model of the occurrence frequency of L in the respective languages 

developed in the previous sections. Given the assumption of normal distributions, it is 

possible to calculate the Bayes error from measured means and variances for the different 

languages. This is, however, overly precise in light of the assumptions that were made 

during the modeling, such as the assumptions of normal distribution and other regularities 

that may not occur in real speech. A simpler measure is adopted which allows us to 

perform analytic calculations without a degradation in accuracy. This choice is verified in 

Chapter 5 where the theoretical estimate is matched to actual data. Given the distribution 

of sequence occurrences as derived in the previous section, the discrimination error for a 

pair of languages based on a one-dimensional feature space of one sequence is estimated 

with the Bhattacharyya distance [31] as given here. 
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error (3.11) 

Suppose now, that we want to estimate the joint error due to any two sequences 

resulting in a two dimensional feature space. Along each dimension the mean and variance 

corresponding to the chosen sequences have normal distributions. Assuming independence 

of features, we next derive a vector a which will be used in the weighted scalar product 

with the feature vector to produce a linear mapping onto a single dimensional space as 

depicted in Figure 3.3. 

\i     = aiu[l]     +a2u[2] 

a2   = a2s[l}2   +a2s[2]2 
(3.12) 

Figure 3.5: Combining two features linearly for optimal discrimination. 

The goal is to derive the vector a which minimizes the error. In order to find the optimal 

a, the error will be differentiated with respect to a. If we were to use the Bayes error, this 

would result in a non-linear equation, to be solved numerically. Thus, we will approximate 

a using the Bhattacharyya distance. Since differences in mean occurrence frequency are 
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more pronounced than differences in variances, the second term in Equation 3.11 can be 

dropped, u replaced by fi, and s replaced by a, resulting in: 

error =-e  4l»iW2+»aWi,J (3.13) 

This simplification is verified for real data in Chapter 5. We calculate the optimal weight 

a by taking the derivative of the error with respect to a and setting it to zero to solve for 

a at the minimum error. nc\j] and ^clj] as given in Equation 3.12 are expanded into an 

equation which can be solved for a. Without loss of generality we can set OJI = 1. Then 

the derivation solving for 012 is given in Figure 3.3. 
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Figure 3.6: Derivation of a 
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The weighting of the new word is proportional to the difference in mean occurrence 

frequency between the two languages. However, the higher the combined variance of the 

occurrence in the two languages is, the smaller the weighting. a2 is therefore intuitively a 

measure of goodness of the new word in comparison to the first word. Given the optimal 

a the estimated error between the two languages is guaranteed to decrease after adding 

the second word. 

1 -irW-»")2! 1 lrtuztll-uill])2, 
-e   4L °\±°l     < -e   4l»2[>l2+nl>F (3.14) 
2 _ 2 v 

In order to estimate the error based on a list of N sequences the top N sequences in the 

aligned strings from both languages, sorted by their estimated error according to Equa- 

tion 3.13 *, are chosen. Rather than optimizing all a[j] at the same time, we choose to 

calculate a suboptimal solution by optimizing each a[j] separately. Let C denote the lan- 

guage and let List(N)c be the overall distribution of the list of N sequences representing 

language C a is chosen to minimize the error between 

ListCl ~ Ninci^d)  and Listc2 ~ N(nc2,<rc2 

Thus we have, 

List(N-l) ~N(fj,'c,a'c) 

Word{N) ~ N(uc[N], sc[N]) 

List{N)c * N{ti'c + auc[N], ^/a'2c + a*sc[N]2) 

List(N)c ~N(fic,<rc) 

(3.15) 

Global optimality of the vector a is not the goal at this stage.   Instead we seek a 

prediction measure which will compare two different sets of labels with each other. Using 

'From here on we will refer to this simplified equation as the Bhattacharyya distance. 
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the same suboptimal solution for both will result in a quantitative measure which allows 

us to choose one label set over the other. Classification optimization will be done only in 

the end, after the best label set was chosen. 

In this section an error estimate for a given sequence was derived. Based on this value, 

a list of discriminating features consisting of sequences could be derived for which in turn 

the language identification error can be estimated. It is now possible to determine whether 

a set of speech units that is used across all languages in the system is sufficiently detailed 

to express the differences between languages. 

3.4    The Complete Algorithm 

Using the theory developed in the previous four sections we can now formulate an iterative 

algorithm to estimate the discrimination error between two languages based on a list of 

optimally selected words represented in terms of a given set of labels. There are three 

essential steps in this process: 

1. Frequency Modeling of Sequences. 

2. Sequence Selection and Error Estimation. 

3. Phoneme Merging. 

The flowchart shown in Figure 3.7 depicts the iterative process of merging phonemes 

and estimating language classification error. At the extremes of this algorithm we obtain 

either a phoneme based system [37] or a broad category based system [80]. This algorithm 

will return the lowest number of phoneme clusters without losing language discriminability, 

together with an error estimate as a function of time due to the chosen features. 

The input to this algorithm will be both the labeled and the automatically aligned 

training files at the phoneme level, the hierarchical clustering algorithm developed in 

Section 3.1, and the recognition accuracy of the phoneme recognizer in form of a confusion 
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matrix 2. The algorithm will estimate the language identification error based on a list of 

sequences at each level of phoneme clustering, as discussed in this chapter. Based on this 

estimate it is determined whether phonemes may be clustered without losing the ability 

to discriminate between the languages in the system. The output will be the maximally 

clustered phonemes along with an estimate of maximum error as a function of the length 

of the input speech. 

2 If labeled files are not available, one may consider using the aligned files and a confusion matrix based 
on a self-similarity measure (for example the distances between the HMM models) to calculate the expected 
mutual information. 
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Figure 3.7: Flowchart for estimating the error of an LID system and deriving the appropriate set 
of labels. 
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3.5    Language Classification 

A string of unknown language is classified by matching features that were extracted from 

a training set. Features correspond to the top N sequences chosen from the training set, 

modeled with parameters <Ti,<T2,t*i,P2 as shown in Equation 3.15. Let / be the vector 

of length N where each element of the vector denotes the frequency of occurrence of the 

corresponding feature (sequence) at time t in the string of the unknown language. Let y 

denote the scalar product of a and /; then the string of labels is classified to belong to 

language £,• according to the maximum likelihood as shown in Equation 3.16. 

Language = argmax 
Vi£/ang 

.     21    <rr.     J 

2n a d 
(3.16) 

c o 
Ü 
03 

O 
L. 
0) 
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number of labels seen in string 

Figure 3.8: Actual error from model language r and estimated errors from Bhattacharyya distance 
and Bayes' error. Plot shows fractional error as a function of time (measured in terms of the number 
of phonemic segments observed). 

The classification depends on statistics computed based on all labels seen up to and 
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including the present label at time t. Reclassification of a string takes place each time a 

new label is seen and the statistics are updated. The error is a function of the variances and 

therefore decreases as s2 goes to zero. Fig. 3.8 shows how the estimated errors compared 

to the actual error rate when classifying the model language r specified in Table 3.1. (see 

Chapter 4.1.1). It can be seen that the Bhattacharyya distance provides a fairly loose 

bound on the actual error. This may actually be more appropriate on real data since 

some of the assumptions of independence that were made may not be accurate in speech 

as they were in this model language. 

Table 3.1: Example of specifications for feature parameters. Assuming normal distributions, only 
the mean and standard deviation have to be specified. 

£i(*)£W(«i(0.*i(i)) 

£2(i)eN(u2(i),s2(i)) 

£i(a)e W(0.05,0.01) 
£i(6)e JV(0.02,0.01) 
£i(c)eJ\T(0.04,0.01) 

£2(a)eiV(0.01,0.01) 
£2{b)eN (0.01,0.01) 
£2(c) e N(0.01,0.01) 



Chapter 4 

Effect of Inaccurate Alignment on 

Language Discrimination 

The model described in Chapter 3 will now be extended to include the effect of inaccurate 

alignment on the discriminability of languages. The goal is to model the distribution of the 

aligned data based on knowledge of the labeled data and the faulty alignment process. The 

inverse of the alignment process and the model of the aligned data can in turn be used to 

reestimate the ,accurate labeled data. Discrimination of languages based on labeled data is 

therefore better. The hope is to use this information to improve language discriminability 

by improving the chosen set of features. 

We will model the output of three classifiers using labeled, aligned and reestimated 

labeled data in order to compare their performance. The first classifier is based on true 

data with no misrecognition (analogous to labeled real-world speech data), the second is 

based on data with misrecognitions (analogous to automatically aligned speech data). A 

third classifier is based on a new method which uses inexact sequence spotting in order to 

reestimate the true data from the aligned data and knowledge of the alignment process. 

Section 4.1 will introduce the specification for the model language and will define the 

notation used in the rest of this chapter. The model language r is constructed in order to 

simulate the theoretical derivations. 

The output distributions of the three classifiers are derived based on the theory de- 

veloped in Chapter 3. Section 4.2 will extend this model by including the characteristics 

of the misrecognitions during the alignment process. The impact of inaccurate alignment 

on language discrimination can then be derived theoretically. In order to compensate for 

48 
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the misrecognitions in the aligned data we want to reestimate the accurate labeled data. 

Using the inverse of the alignment process and the modeled misrecognitions of the aligned 

data, Section 4.3 introduces a method of inexact sequence matching. We show, however 

that this attempt to reduce the adverse effects of the alignment process is not effective in 

improving discrimination of languages. 

4.1    Modeling True Data 

Before studying the effect of automatic alignment on the degradation of features for lan- 

guage identification, this section will first develop the model for specifying feature distri- 

butions in the true data. True data is analogous to hand-labeled data in real speech which 

is assumed to be the correct representation of speech. Given the specifications and the 

model developed in the previous chapter, we are able to develop a notation used to derive 

the corresponding parameters, the mean fi and the variance a1 ji 

4.1.1    Specifying the Model Language r 

A generator for r creates N strings of labels whose parameters u and s for normal dis- 

tribution N(u,s) are specified for two languages. An example of the distributions of any 

number of labels in the true data of languages Cx and C2 (i.e. with no misrecognitions, 

similar to hand-labeled data in a real language) was given in Table 3.1. Any number of 

strings can then be generated to represent both languages reflecting the specified distri- 

butions. In this example, there are three labels, (a, b, and c) that occur in each of the 

languages, but with higher frequency in C\. In general labels a, b, and c will be used to 

denote relevant sequences in the true data and labels x,y, and z will be used to describe 

the corresponding sequences in the aligned data. Without loss of generality, these labels 

are place holders for sequences of any length. Misrecognitions due to the alignment will 

be described in Section 4.2. Note that these probabilities are not expected to add up to 

1.0. We assume there exist other sequences which are not used for language identification. 

This allows us to assume independence of occurrence frequency for each sequence. 
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4.1.2    Language Discrimination 

Figure 4.1: Channel with recognition probabilities. 

Based on the specifications, the distribution of the occurrence frequencies of each feature in 

the different languages is modeled according to the theory developed in Chapter 3.2. The 

specified features are then combined according to Chapter 3.3 using a weighting vector 

a. Discrimination of two languages depends on the degree of overlap between the two 

language dependent distributions of the classifier output o shown in Figure 4.1. 

In order to estimate the discrimination error due to the two language dependent dis- 

tributions of o we derive the mean fi0 and the variance <T% for the distributions of the 

classifier output. Given the definitions in Table 4.1, the expected value of the output 

is derived as follows: If symbol a occurred na times, b occurred nb times, the expected 

number of occurrences of o is 

"6 

E[n0\nanb] = E[^2 aa + ]P ab] 
»=1 i=l 

= naaa + nbCtb 

=» E[n0] = aaE[na] + abE[nb] 

=>■ Ho = E[n0] 

. = aauCi[a] + abuCi[b] 

(4.1) 
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Table 4.1: Definitions 
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nb 

<t>L 

Pa 

number of labels x in the aligned data 

number of labels y in the aligned data 

number of labels a in the true data 

number of labels b in the true data 

a binary random variable denoting whether the 
fth occurrence of label a in the true data goes to x. 

mean occurrence frequency of label a 

variance of occurrence frequency of label a 

"6 

E[n2
0\nanb] = E[(J2 «a + £ «ft)2] 

i=l 
rif,    nt, na    nt 

t'=l i=l »'=1 s'=l »'=1 »=1 

E[nl] = a2
aE[n2

a] + a2
bE[nl\ + 2aaabE[nanb] 

(4.2) 

Assuming independence: 

Ein2] = a2
aE[n2

a] + a2
bE[n2} + 2aaabE[na][nb] 

= <*l(uCi[a]2 + ^.W2) + <*b(uc,[b]2 + sc.[b?) + 2aaabuc,[o]uc,[b]       (43) 

Thus, 
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=>a2
0    = E[n2]-E[n0]2 ( by definition) 

= sci[a]2a2
a + sc,[b]2ab 

The classifier for this model has already been developed and modeled on generated 

data in the previous chapter in Section 3.5. The goal of this chapter is to extend this 

model to include the alignment process. 
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4.2    Modeling Data with Misrecognitions 

In order to classify the language of an utterance, its time signal (waveform) is generally 

automatically time aligned with a string of labels as described in Chapter 1.1. The re- 

sulting string does not agree perfectly with the string of labels created by a human expert 

for the same utterance which we assume to agree with the intended string. The confusion 

matrix P is used to specify the relation between true data and the aligned data with 

misrecognitions as depicted in Figure 4.2. While features in the true data were assumed 

to be independent, due to the confusion matrix this may no longer be true for the features 

in the data after alignment. Distributions for both cases are derived and the impact of 

the alignment process on language discrimination is discussed. 

Figure 4.2: Misrecognition probabilities due to alignment. 

4.2.1    Modeling Independent Features 

Before modeling the case of interdependent features, it is useful to first look at indepen- 

dent features. A confusion matrix P can then be specified in the model describing the 

recognition performance of the alignment process (the "channel"). An example of P which 

retains feature independence is given in Table 4.2. The frequency of occurrence üc[X] of 

any sequence X in the aligned data for language C relates to the actual occurrence uc[A] 

of the sequence A in the true data as follows: 
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Table 4.2: Confusion matrix due to alignment with independent recognition of labels. 

aligned x aligned y aligned z other 
true a 
true b 
true c 

0.8 
0.0 
0.0 

0.0 
0.1 
0.0 

0.0 
0.0 
0.6 

0.2 
0.9 
0.4 

other 0.0 0.0 0.0 1 

üc[X] = pAXuc[A] (4.5) 

The variance depends on pAX accordingly, 

slc[X]2 

Var(üc[X]) 

= Var(üc[X]) 

= E[(pAXuc[A]-pAXfc[A])2] 

= E[{uc[A] - fc[A])VAX] 

= P2
AXE[(uc[A]-fc[A])*} 

= pAXVar(fc[A]) 

= p\xslc[Af 

(4.6) 

The distribution of the occurrence frequency for sequence X in the aligned data is then 

used as the estimate for distribution of sequence A in the true data. The resulting normal 

distribution is described by mean ü and variance s2. 

fc[X]   e N( uc[X] ,  §c[X] ) 

= N( PAxuc[A] ,   y/slc[Xf + s2c[XY ) (4.7) 

= N( PAXuc[A] ,   jpAXslcW + s2c{XY ) 
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where s2c[X] is obtained from Equation 3.10 by replacing uc[A], the actual frequency of 

A in the true data with üc[X], the frequency of X in the aligned data. 

s2c[xf = £ ( l ) ((üc[x]y(i - (üc[x])y-'(j - (üc[X])f 

= E f f ) (iPAXUc[A]r(l - {pAXUc[A])y-*(j - [PAXUc[A])f 

(4.8) 

x=0 

u.o 

0.45 

 1  i 

0.4 - \ 

0.35 
\x 

0.3 
1™ 

03 
0.25 

0.2 

0.15 
N?\ XSS\ 

0.1 ^^~^- 

0.05 

0 1                                  ■ 

P(XIA) = 1.0 
P(XIA) = 0.2 
P(XIA) = 0.4 
P(XIA) = 0.6 
P(XIA) = 0.8 

20       40       60       80       100     120     140      160 
number of labels in classified string 

180     200 

Figure 4.3: Classification error as a function of time (in terms of segments) for various values of 

P(X\A)=PAX. 

A plot of this equation in Fig. 4.3 shows how different values of PAX can affect the con- 

vergence rate of the classification error. The lower the probability of correctly recognizing 

a sequence, the lower the effective occurrence frequency of the sequence is. Even though a 

sequence may be important to distinguish labeled languages, it may be negligible during 

language classification if the alignment process is not capable of recognizing the sequence. 
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4.2.2    Modeling Correlated Features 

It is generally not true, however, that features are independent of each other. The confu- 

sion between features is usually such that they greatly influence each other's occurrence 

frequencies. Consider the confusion matrix of Table 4.3 which stands in contrast to Ta- 

ble 4.2, in which the features remain independent after alignment. In order to study the 

effect of such dependencies which may be frequent for sequences of shorter length, we 

formulate the problem in terms of two interdependent labels x and y. 

Table 4.3: Confusion matrix due to the alignment with interdependent recognition of labels. 

aligned x aligned y aligned z 
true a 
true b 
true c 

0.8 
0.1 
0.0 

0.1 
0.5 
0.8 

0.1 
0.4 
0.2 

We now proceed to compute the distribution of a label x in the aligned string based on 

the known distribution of labels a and b in the labeled string and a confusion matrix 

P denoting the probability of misrecognition due to the channel or alignment process 

depicted in Figure 4.2. 

Pax     Pay 

Pbx     Pby 

The distribution of the aligned features depends on two random processes: the distri- 

bution of the true data and the perturbation due to the alignment process. In order to 

calculate the distribution of label x, the random process of the alignment is first presumed 

to be constant; the result is then integrated taking the alignment into account. Given the 

definitions from Table 4.1, the expected value of nx is calculated for a given na and rc&. 

Let 4>\x be a binary random variable which equals 1 when the ith occurrence of label a in 

the labeled string goes to x. Then, for a fixed number of labels in the labeled string, na 

and rib, the expected variance of nx can be calculated as follows. We first calculate the 
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expectated value of nx: 

"■b 

E[nx\nanb] = £[£>L + E #J 

= na£[^] + »&Wj (4"9) 

= naPax + ra6P6r 

In order to calculate the expected value of nx by taking the distribution of a and 6 

into account, E[nx\nanb] is integrated over all na and nb resulting in the following: 

E[nx] = ^2Y, E[nx\nanb]p(nanb) 
na   nb (4.10) 

fix = VaPax + ßbPbx 

The expected value of n\ is calculated in a similar manner by assuming a given na and nb 

and then integrating. This results in the following derivation: 

E[n2
x\nanb] = £[(f>L + XX)2] 

i=1 i=1 ,    „ (4-11) na    na na   nb nb    nb       .      ., v ' 

= *E E «£.«£+2 £ £ ti*4L + £ £ OLl 
i=i i'=i i=i i=i i=i i'=i 

^'aa. and 0^. are not independent when i = i', so that £[<&*<&*] is not e<lual to £[<&*] EWax\ 

In fact, ^j.^ is either 1 * 1 or 0 * 0 and in both cases is the same as <t>\x. This explains 

the compensation summand which is shown in the next line of the derivation. 
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E[nl\nanb] = £ £ £[4,TOaJ + £ WL] " WJ2) 

+ 2££i^LMC] 

n6    nfc ni, (4.12) 

+ £ £ £[CMC] + EWU - £[*U2) 

= («oPax + «6P6ar)2 + napax(l ~ Pax) + nbpbx{l - Pbx) 

Integrating over all values of na and nb, 

E[nl] = E E £,[^|nan6]p(nan6) 

= E £(na2W + ^Pi-*)2 + napax(l - pax) + nbpbx(l - pbx)p{na)p{nb) 
"a     Tlj, 

.2   ,   Ji\J2     ,   (-,,2   ,   „2\^2 = (A*o + *a)Pa* + (/*& + ffc )Pte        ( by definition of variance) 

+ 2/J.afihPaxPbx + HaPax{l ~ Pax) + VbPbx{l ~ Pbx) (4-13) 

= {VaPax + ßbPbx)2 + <y\p\x + abPbx 

+ PaPax{l ~ Pax) + VbPbx(l ~ Pbx) 

We can now calculate the variance of x, since a\x = E[nx] - E[nx]2, resulting in the 

following: 

°l = °IPIX + °bPbx + VaPax(l ~ Pax) + HbPbx(l ~ Pbx) (4"14) 

Using the same notation as above we can also calculate the covariance for distributions 

of x and y. The result will be needed in the next section but it is convenient to perform 

the derivation here. 
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na nt, na 
nb 

E[nxny\nanb] = E[(£ </>L + E 4) (E &v + E ^ 
t=l t=l t=l i=l 

= ^E E #.<,] 
i=l t'=l 

+ CE4<] (4.i5) 
i=l j=l 

+ £[EE44] 
i=i j=i 

0^ and 4>%y are not independent when i = V. <fiax is always opposite to <j>^y because for 

the given label i only one of the two cases can be true: either the ith label a goes to y or 

to x. Hence, 4>\x^x is always zero for i = i'. Since E[4>ix^x] is not equal to Ety^Ety^ 

a compensation summand is added as shown in the next line of the derivation. 

na      Via "-a 

= EE EttLMtQ - E EWax]EWay] 
i=i i'=i «=i 

na   nb 

+ EE^-M<] 
i=l j=l 

na    nb 

+ EE**] (4 16) 
nb     nb nb 

+EJ2 E[4M€I - E EiriMrty] 
j=i i'=i i=i 

KPaxPay + HPhxPhy + nanbpaxpby + nanbPbxPay 

- napaxPay ~ Tlbpbxpby 

Integrating over the distributions of a and b we get: 



60 

=*• E[nxTly] = {HaPax + f*bPbx)(fJ>aPay + fibPby) 

- VaPaxPay ~ ßbPbxPby 

+ vlPaxPay + ^bPbxPby 

= \ix\iy - fiaPaxPay ~ HbPbxPby + ^PaxPay + &bPbxPby 

(4.17) 

We have now derived the distributions of the labels x and y in the data after alignment 

based on the distributions of a and b in the true data in conjunctions with the channel 

characteristics given in the confusion matrix. It has also been shown that the covariance 

of the labels after alignment is no longer zero. 

4.2.3    Language Discrimination 

As was done for true data in Section 4.1 we want to estimate the error for the data after 

alignment. In order to estimate the discrimination error due to the language-dependent 

output distributions of the classifier o (as shown in Figure 4.2), we derive the two param- 

eters describing the distributions, the mean \i0 and the variance a0. Unlike Section 4.1, 

o now depends on x and y which in turn depend on a and b and P, the confusion ma- 

trix defining the misrecognition due to the alignment. In this section we show how the 

alignment process has affected the language discriminability of label a in the true data, 

corresponding to label x after alignment. For this purpose there is only one feature and 

we assume that the weighting of this feature ax = 1. We get: 

E[n0] = E[nx] 

=*>Mo = fix 

= Uapax + UbPbx 

E[nl] - - E[n0f = E[nl] - E[nxf 

^°l 
= °IPIX + tfPbx 

(From Eq. 4.10) 

(4.18) 

+fiaPax{l - pax) + fxbPbx{l - Pbx) (From Eq. 4.14) 
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Table 4.4: Specifications for model language r which has one language discriminating feature. 

.03 

.01 
sCl [a] .01 

.01 

uc2[a] 
uc2[b] 

= .01 
= .01 

sc2[a] 
sc2[b] 

= .01 
= .01 

(4.19) 

In order to gain some intuitive understanding of the effect of the alignment on the 

discrimination error a model language with the specifications in Table 4.2.3 was imple- 

mented. 

Note that there is only one discriminating feature. The confusion matrix P is given as 

follows. 

Pax     (1 - Pax) 

Pbx      (1 ~ Pbx) 

pax and pbx are varied between 0 and 1 to study the effect of the alignment process on the 

distribution of label x. Figure 4.4 plots the effect of the alignment on the discrimination 

error as a function of pax and pbx. As expected, the error is at a minimum when the 

occurrence frequency of the aligned features is undiluted by the alignment process, ie. 

pax = 1 and pbx = 0. While pax = 1 and pbx increases to one, the discrimination error 

increases as well, even though the distribution of label b is neutral. Alignment errors of 

any form increase the variance of x in this case and hurt discriminability. Note that error 

depends on the difference between the means of the occurrence frequencies of labels a and 

b in the true data distribution. This difference is 0 for a and .2 for b according to the 

specifications, which explains the asymmetry in the graph. 
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0     0 
P3* " pbx 

Figure 4.4: Discrimination error using exact sequence matching of a; as a function of pax and pbx- 

4.3    Modeling Reconstructed True Data 

In the previous section it was shown that the alignment can increase the discrimination 

error between two languages. The question to be answered in this section is whether the 

degradation in the language discrimination can be reversed. In other words, is it possible 

to use the knowledge of the transmission characteristics to reestimate the original, true 

distribution of the features? The goal then is to recompute the distribution of label a, 

given the distribution of labels x and y in the data after the alignment process due to the 

confusion matrix P. Let A be the input feature vector to the channel and X the output 

feature vector after the alignment. Then, A and X depend on P as follows: 
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True 
Data 

A 

Automatic Alignment 
Aligned 
Data 

i 
i 

 P  *" 

-e  C    

Figure 4.5: Alignment process and reverse process characterises. 

X   =PTA 

A    =PT~1X 

A    =CX 

(4.20) 

We now want to compute C, the inverse of matrix PT, to capture the inverse process 

due to the alignment as depicted in Figure 4.5. Let C be denoted by: 

4.3.1    Feature Modeling 

The goal is to reestimate the distribution of a in the true data from the distributions of x 

and y in the aligned data. The reestimated value is denoted by ä. We first derive -E[ra|] 

and E[nä]2- 

E[nä\nxny] 

=> E[nä] 

— E[J2i=l cxa + 2^i=l cya\ 

= E[nx]cxa + E[ny]cya 

(4.21) 

We know that: 
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E[nx]   = [laCXax + PbUbx from Equation 4.10 

= Px 

E[ny]   = fia<*ay + A*6"6y from Equation 4.10 (4.22) 

= My 

Integrating Equation 4.21 over distributions for a and b, we get: 

E[nä]2     = (/i^C^a + fiyCya)2 

Ein2;] is calculated in a similar manner: 

E[n2
ä\nxny] = £[(£cra + X>ya)

2] 
»=1 i=l 

nx    n* nx   "v ny    ny 

= E[Y^ Y^Cxa + 212YlCxaCxb + Yl Yl Cx>>] 
j=l i'=l i=lj=l j=lj'=l 

= £[»»4 + 2nccnyc;rac2/a + n^0] 

21 „2 = £7[n*]c*a + 2E[nxny]cxacya + E[nJ]c; yo 

We know t hat 

E[nx] = ol + nl 

E[n2
y] = °2y + »l 

E[nynx] = fixity 

l^a&ax&ay       fJ'b^bx^by 

+<rlPaxPay + tfPbxPby 

by def. of variance 

by def. of variance 

(by Eq. 4.17) 

(4.23) 

(4.24) 

(4.25) 
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Equation 4.24 then becomes 

E[nl] = (fixcxa + HyCyaf 

,      22     i      2   2 
T "xcxa   >   aycya 

- 2cyaCxa(fJ,aPaxPay + VbPbxPby (4<26) 

+ 2cyaCxaalpaxPay + <?bPbxPby) 

so that 

=» <r2 = £[n2] - £[na]2 

= Ä + <Ä 
- 2CyaCXa{fl'aPaxPay + ßbPbxPby) 

+ 2cyaCa;a(72pa3:Pay + ^bPbxPby) 

(4.27) 

In addition we will calculate the covariance of na and nb which will become useful 

during the derivation of the output distributions of the classifier but is convenient to 

derive here. 

E[nän-b\nxny]   = E[(E£i cxa + T.Zi <V) (E?=i c**> + £2i <hfi)] 

=^> E[näng]        = ^[näcj.oCa.6 + E[n2
y}cyacyb 

+E[nxny]cxacyb + E[nxny]cyacxb 

= 04 + ^««Crf + (/*2 + <y2y)CyaCyb (4'28) 

+jB[n;rray]c2;ac2/fe + ü^nsnjJcyaCsft 

where #[rarnj,] was calculated in Equation 4.17 and fix and ax are calculated in Equa- 

tions 4.10 and 4.14. The covariance between a and b is non-zero. 
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4.3.2    Discrimination with Inexact Sequences 

In order to estimate the discrimination error due to the language-dependent distributions 

of the reestimated ä, we now derive the mean fa and the variance <r\ for each of the 

two distributions. Unlike Section 4.1 and Section 4.2 classification now depends on ä 

which in turn depends on the inverse characteristic of the recognition process, modeled 

by C and on x and y which in turn depend on a and b and P the confusion matrix as 

shown in Figure 4.5. The variance of o is now due to the weighted sum of the reestimated 

distributions ä and b. 

Figure 4.6: Classifier based on reestimated true data. 

E[n0\n-an-b] = E[J2 a-a + ]T) as] 
i=i t=i 

= E[nä]a-a + E[n8]ag 

E[n0]2 = {n-aa-a + v>-ba-b)
2 

(4.29) 

Similarly, 
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£[^|nans] = £[(X>ä + 5>i)2] 
i=l «=1 

= E[nl]a2
ä + E[n$al + 2E[näni]aäai 

=> E[nl] = filal + n\a\ + ajaj + a\a\ + 2E[näni]aäa-b 

Finally, we get the variance as follows: 

al        = E[n% - E[n0f 

=> <r2o    = °l<4 + <y\<*\ + 2a-aa-b{E[n-an$ - E[nä]E[nh]) 

E[näTi-h] was calculated in Equation 4.28 and E[nä] = fia and E[n-h] = fi-b. 

(4.30) 

(4.31) 
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4.4    Classifying Model Language r 

Before comparing two systems using exact and inexact sequence matching, we would like to 

review why inexact sequence matching is believed to help the performance of a language 

identification system. The goal of inexact sequence matching is to associate sequences 

which cover (a) the variability of a word within one language without sacrificing any dis- 

criminability across languages and (b) model better the statistics of long strings even with 

limited training data. Thus, it is believed that combining sequences in this manner will 

result in a system which is more robust and therefore generalizes better to previously un- 

seen test data. As an example consider the word "and" in English which, in fluent speech, 

is pronounced in several different ways: (/a/n/dcl/d/,/n/dcl/,/a/n/,etc). These se- 

quences of phonemes can then be associated with each other to form a single feature which 

intuitively would be more robust across different speakers. In this section we will analyze 

the effect of associating such sequences as opposed to matching only the most frequent 

sequence among them, for example /a/n/dcl/d/. 

4.4.1    Exact vs. Inexact Sequence Matching 

A sequence is chosen as a feature because it is language specific. In other words it occurs 

in language 1 with higher frequency than it does in language 2. This is the only type of 

feature of interest. The question now is: How can inexact sequence matching be useful to 

create a new feature distribution which will improve language discrimination? Intuitively, 

one might expect to add another sequence which similarly occurs more frequently in 

language 1 than in language 2. Returning to our example above, we can choose to add 

the sequences /n/dcl/d/ to /a/n/dcl/d/, representing the English word for "and", and 

treat them as two instances of the same feature with inexact sequence matching. In this 

case suppose that both sequences are typical for English but not for German. This is the 

first case that will be considered in a theoretical analysis. However, to study the complete 

set of possibilities, we will present two more cases, the second one, in which the feature 

that is added can by itself not be used to discriminate between the languages, and the 

third one, in which the feature that is added belongs to another language. The three cases 
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that are considered are enumerated below. 

1. Case 1 Adding a sequence b common in the same language as sequence a. 

2. Case 2 Adding a neutral sequence b to a. 

3. Case 3 Adding a sequence b common in the language where a is less common. 

In each of the above cases, sequences from the aligned data are combined to form the 

inexact match in order to reestimate the input distribution of a as depicted in Figure 4.6. 

In all specifications, the distribution of the feature to be matched exactly occurs with 

higher frequency in the true data for language 1, making it a useful feature for discrim- 

ination. In order to see how the inexact sequence matching relates to exact sequence 

matching we will compare the discrimination error due to the following two distributions: 

Distribution of Classifier Output Using Inexact Sequence Matching (ä): 

Mo — I^x^xa   i   f^y^ycL (from Eq. 4.27) 

°l -a2c2   + a2c2 
— u x^xa   '   uy^ya 

-2CyaCxa(napaxpay + HbPbxPby) 

+2CyaCxa(alpaxPay + ^2pbxPby) 

(from Eq. 4.23) 
(4.32) 

Distribution of Classifier Output Using Exact Sequence Matching (a:): 

Ho     = Uapax + UbPbx (Fr°m Eq- 4-10) 

„2     _ ^2„2      ,   ^2^,2 (4.33) ao     — ^aPax -T abPbx K ' 

+HaPax{l - Pax) + HbPbx(l - Pbx) (From Eq. 4.14) 

We will see that for all cases where inexact sequence matching outperforms exact 

sequence matching there exists a way of achieving higher classification by using exact 

sequence matching in a different way. The confusion matrix for the theoretical analysis is 

given by Equation 4.34. 
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Pax     (1 - Pax) 

Pbx     (1 - Pbx) 

(4.34) 

In order to generalize to a larger number of inexact sequences to be grouped, the 

confusion matrix is also used for generating the model language in some cases as discussed 

below. The confusion matrix P in theory does not restrict specifications to substitutions 

but can include deletions and insertions. Without loss of generality, we simplify the 

implementation to include only substitutions. 

Pax   (l-j>o*)/2   {l-pax)/2 

Pbx    (1 - Pbx)       0 

Pcx      0 (1 - Pcx) 

(4.35) 

4.4.2    Case 1: Adding Common Sequences 

inexact 
sequence 

exact 
sequence 

Figure 4.7: Discrimination is better when using two separate features rather than reestimating 
the distribution of 5 

In the first case to be analyzed, all features to be combined occur with higher frequency 

in language 1. The specifications for an example case are given in Table 4.5. pax and 

Pbx are varied between zero and one in order to calculate the discrimination error for ä 
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pax 0    0 
pbx 

Figure 4.8: Surface plot for the difference in error for exact vs. inexact sequence matching using 
specifications given in Table. 4.5. The surface would lie below zero if inexact matching were to 
outperform exact sequence matching. 

Table 4.5: Specification for case 1 

uCl [a] .03 
.03 
.01 
.01 

uc2[a] 
uc2[b] 

.01 

.01 
sc2[a] .01 

.01 

(4.36) 

using both sequences y and x for inexact sequence matching. In order to see if the error 

is reduced compared to using exact sequence matching, Figure 4.8 plots the difference in 

error between both approaches. Since it can be seen from the plot that the difference 

is never below zero, the error will always be larger for inexact sequence matching than 

for exact sequence matching. For this case, inexact sequence matching never outperforms 

exact sequence matching even though we expected to gain by grouping the sequences 

representing different pronunciations together; it is preferable to simply use exact sequence 

matching, as illustrated in Figure 4.7. An intuitive way of looking at this result is to realize 

that there are two useful features in the aligned files. The optimal way of combining the two 

features can be calculated exactly. The chances are very low that the optimal weighting 
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of the sequences, maybe their non-linear combination, corresponds to the vector a used 

to reestimate the labeled sequence. 

4.4.3    Case 2: Adding Neutral Sequences 

As in the example from Section 4.2, the distributions of the model language for this case 

are given in Table 4.6. 

Table 4.6: Specification for case 2 

uCl [a] .03 
.01 

sCl[a] 
'CM 

.01 

.01 

uC2[a] 
uc2[b] 

.01 

.01 
sc2[a] .01 

.01 

(4.37) 

In the confusion matrix P, given by Table 4.34, pax and pbx are varied between zero and 

one in order to calculate the discrimination error for ä using both sequences y and x during 

inexact sequence matching to reestimate the labeled files. In order to see if the error is 

reduced compared to exact sequence matching of x (as plotted in Figure 4.4), Figure 4.9 

plots the difference in the error percentage using the two approaches. Inexact sequence 

matching outperforms exact sequence matching for areas in which the surface plot lies 

below zero. 

Table 4.7: Specifications for model language r which has one language discriminating feature. 

uCl[a]   =.03; 
uCl[b]    =.01; 
ucM    =.01; 

uc2[
a] = -01; 

ucAb] =.01; 
ucAc]   =-01; 

«£,[«]   =-01; 
sCl[b]   =-01; 

scAa] =.01; 
scAb] =-01; 
scAc]    =.01; 

(4.38) 

From Figure 4.9 it can be seen that inexact sequence matching outperforms exact se- 

quence matching if pax < pbx. In order to verify the theoretical prediction on generated 
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Figure 4.9: Surface plot for the difference in error for exact vs. inexact sequence matching using 
specifications given in Eq. 4.34. The surface lies below zero when inexact matching outperforms 
exact sequence matching {pax < Pbx)- 

data we choose an operating point at pax = .1 and pbx = pcx = .7 for which inexact 

sequence matching has higher discrimination than exact sequence matching. Generalizing 

to three sequences, the specifications are given in Equation 4.35 and Table 4.7. Figure 4.11 

plots both the actual error and the theoretical prediction comparing exact and inexact se- 

quence matching. It can be seen that inexact matching indeed outperforms exact sequence 

matching. 

exact 
sequence inexact 

sequence 
alternate 
exact 
sequence 

Figure 4.10: Discrimination is best when using the alternate feature y rather than x or reesti- 
mating the distribution of ä 
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However, looking more closely at the resulting distributions in the aligned data, it can 

be seen that y has become a strong feature: Plugging uct [j] and P into Equation 4.33 

the difference in mean occurrence frequency of y in the two languages is .2 while the same 

difference for sequence x is only .04. Thus, the distributions for y for the languages are 

further apart indicating better discriminability. Figure 4.11 plots the discrimination error 

achieved by spotting sequence y exactly rather than performing inexact sequence matching 

on x, y, and z, trying to reestimate the original distribution of a. This shows that, even 

though there exists an operating point at which inexact sequence matching outperforms 

exact sequence matching, another sequence at this operating point was transformed into 

a feature whose exact matching discriminates better than the inexact sequence matching. 

Intuitively one may think of the discriminating information to be in either of the two se- 

quences in the aligned files. Depending on the probability of recognition, the discriminant 

information is transfered from label x to y in Figure 4.10. 

0.6 

o 
0) 

0.5 

0.4 

0.3 

0.2 

0.1 

■^-^■■.>-"<"*""*'-'^r'""v-*-" 

.):4?!V!, <.....i ..jhxv.'x ":..... :.....fr^r:  

estimate for exact sequence matching 
actual error for exact sequence matching 
estimate for inexact sequence matching 

actual error for inexact sequence matching 
estimate for alternate exact sequence y 

actual error for alternate exact sequence y 

0      200    400    600    800   1000  1200  1400  1600 1800 2000 
number of labels seen in string 

Figure 4.11: Plot of discrimination error for case 2. Exact sequence matching outperforms inexact 
sequence matching when the correct label is matched. 
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4.4.4    Case 3: Adding Opposing Sequences 

In this case the distribution is constructed so that the second sequence, b, is a feature for 

language 2, while a is a feature for language 1. The specifications for the example are 

given in Table 4.8. 

Table 4.8: Specification for case 3 

uCl [a] 

uCl [b] 

.03 

.01 

sCl [a] .01 
.01 

uc2[a] 
uc2[b] 

.01 

.03 

sc2[a] .01 
.01 

(4.39) 

Again, pax and pbx are varied between zero and one in order to calculate the discrimination 

error for a using both sequences y and x for inexact sequence matching to reestimate the 

distribution of a in the labeled files. In order to see if the error is reduced compared to using 

exact sequence matching, Figure 4.12 plots the difference in error for both approaches. 

Inexact sequence matching outperforms exact sequence matching for areas in which the 

surface plot lies below zero. It can be seen that inexact sequence matching is useful for 

almost all cases of inexact alignment in this example. 

Table 4.9: Specifications for model language r which has one language discriminating feature. 

uCl [a]   = .03; 
uCl[b]   =-0i; 
ucM   =.oi; 

uc2[a] = .01; 
uc2[b] = .03; 
uc2[c]   = .03; 

scM =-01; 
sCl[b]    =-01; 
sCl[c]   =-0i; 

sc2[a] =.01; 
sc2[b] =.01; 
scM    =-01; 

(4.40) 

Generalizing to three sequences with the specifications, given in Tables 4.9 and 4.35, 

we choose a point of operation at pax = .1 and pbx = pcx = -7. such that inexact 

sequence matching has higher discrimination than exact sequence matching according to 

Figure 4.12. However, in the beginning of this section we stated that the motivation for 
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Figure 4.12: Surface plot for the difference in error for exact vs. inexact sequence matching using 
specifications given in Eq. 4.8. The surface lies below zero when inexact matching outperforms 
exact sequence matching. 

inexact sequence matching was to associate sequences to cover the variability of a "word" 

within a language. In this particular case the two features, a and b represent opposing 

languages and there exists motivation for treating them separately. Thus, building a 

system that was already shown in Section 4.2 (see Figure 4.2), spotting two features 

exactly in the aligned data outperforms inexact sequence matching. Figure 4.13 verifies 

this by plotting the corresponding error curves from the specified model language. 

In conclusion it can be seen that inexact sequence matching did not help in the ex- 

amples that were presented. The same trends that were illustrated in this chapter, occur 

when the standard deviations and means from the specifications are varied. In general it 

seems that the reestimation of the features perturbs the data even more and allows no 

gain. In some cases it is therefore be preferable to increase the number of features rather 

than to use them in inexact sequence matching. Although we have not been able to show 

this analytically, our empirical analysis thus suggests that inexact sequence matching is 
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Figure 4.13: Plot of discrimination error for case 2. Treating features separately is preferable to 
combining features in inexact sequence matching. 

less attractive than it appears. We will investigate this further with practical examples in 

Appendix E. As in Section 4.4.2, an intuitive way of looking at this result is to realize that 

there are two useful features in the aligned files. The first feature captures discriminant 

information about the first language and the second feature captures information about 

the second language. The optimal way of combining the two features can be calculated 

exactly. Again, the chances are very low that the optimal weighting of the sequences, 

corresponds to the vector a used to reestimate the labeled sequence. 



Chapter 5 

Language Identification of Telephone 

Speech 

The algorithm described in the previous chapter is now applied to discriminate between 

English and German telephone speech. Compared to regular speech, telephone speech is 

noisy, thereby increasing the difficulty level of discriminating between the languages. In 

order to recognize this type of noisy speech we rely on previous research in speech recog- 

nition. We choose to use a signal representation called PLP (perceptual linear prediction) 

which has been shown to work well on telephone speech [39]. Once the signal is thus 

represented, a neural network is used to classify the signal in terms of a linguistic speech 

unit such as a phoneme, for example [93]. 

An important part of this chapter is the selection of the speech units which the neural 

network will discriminate. By starting with the union of all phonemes across six languages 

in the database we can approximate a universal representation. We take advantage of the 

tradeoff between precision and accuracy by clustering phonemes across languages without 

losing the discriminating information. For this purpose we have developed the necessary 

theory in the preceding chapters. This theory allows us to predict the discriminability for a 

given set of clustered phonemes without implementing a system at each step of clustering. 

A final set of clustered phonemes represents the maximum precision necessary in order 

to achieve the same degree of discrimination obtained before clustering. The goal is to 

achieve a higher accuracy of phoneme cluster recognition after retraining a neural network 

classifier at the reduced level of modeling precision. 

Speech is automatically aligned by combining the output values of the neural network 

78 
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classifier with a Viterbi search which seeks to find the best possible sequence of speech 

units to align with a given speech input. This process results in a discrete linguistic 

representation of the speech, using the speech representation which was developed by 

clustering phonemes. This alignment is performed on all speakers in the training and test 

set of our database. Each language is assumed to have a characteristic set of features which 

consists of sequences of the phoneme clusters in the aligned speech. From the training 

set such features are extracted and will be used to classify the language of the test set 

speakers. The process of sequence selection has been theoretically developed in Chapter 3. 

The language of a given speaker is identified by aligning the speech with the set 

of derived phoneme clusters, extracting sequences of phoneme clusters as features, and 

employing these to classify the speech. This final classifier is also implemented by using 

a non-linear neural network trained to discriminate between German and English using 

a feature set derived from the speakers in the training set. In this chapter we will show 

the set of features used to discriminate the two languages. Results indicate that by 

clustering phonemes across languages we do not lose discriminative information. We also 

demonstrate the effect of the inaccurate alignment on language identification results, which 

was indicated in theory in Chapter 4. 

Section 5.1 will describe the telephone speech data used in this chapter. The tools 

which will form the basis on which we implement the language identification system are 

discussed in Section 5.2. The speech representation is developed in Section 5.3. Section 5.4 

describes the implementation of the final language identification system and results are 

given in Section 5.5. 

5.1    The Data 

The database used in this study is the OGI-TS database [78], which is a multi-language 

telephone speech database including speech from 21 languages. This database is publically 

available and has been used as the standard database by the National Institute of Standard 

and Technology (NIST) for annual progress evaluations of language identification systems. 

Before analyzing the languages in the database and explaining the level of labeling, we 
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describe the data collection process. 

5.1.1 Data Collection 

Telephone speech data is collected over analog and digital telephone lines. For the analog 

lines speech was collected using a Gradient Technology Desklab connected via a SCSI port 

to a Sun 4/110 workstation. Since November 1993, the majority of data has been collected 

using a 24 channel Tl digital line connected to three LINKON FC3000 Communication 

Boards. These devices were programmed to answer the telephone, play digitized files in 

each of the languages requesting the speech samples, and digitize the callers' response for 

a designated period of time. Speech was sampled at 8000 samples per second at 14 bit 

resolution. The recording protocol was designed to obtain topic specific speech as well as 

free speech on any subject. In this thesis we exclusively use the data in response to a one 

minute story of the caller's choice. The speakers werre given 10 seconds to organize their 

thoughts before recording in order to minimize the number of pauses and false starts. 

5.1.2 Languages 

The Phonetically Labeled Corpus consists of the following languages: English, Japanese, 

German, Spanish, Hindi, and Mandarin. These include about 70 labeled files in each of 

the languages. In this thesis we mainly use the two languages English and German. Please 

refer to Table 5.1 for the amount of data available for each language. 

Table 5.1: Number of files exceeding various durations. 

Number of flies Training Set Test Set 
Time (seconds) EN GE EN GE 

5 51 46 19 20 
10 51 46 19 20 
15 51 46 19 20 
20 51 46 19 20 
25 51 46 19 19 
30 51 46 19 19 
35 51 45 19 19 
40 51 45 19 19 
45 49 43 19 18 
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5.1.3    Corpus Statistics 

The training set consisted of 51 and 46 stories in English and German respectively, while 

the independent development test sets consisted of 19 English and 20 German stories. All 

story files were labeled with worldbet [40], a new ASCII encoding of the International 

Phonetic Alphabet (IPA) including non-European languages (see Appendix A). In most 

cases the symbols consist of a concatenation of an IPA symbol with diacritics. For our 

purposes, all diacritics have been stripped off and some phonemes have been merged 

based on linguistic knowledge due to a lack of sufficient samples for training, as shown in 

Table 5.2. Table 5.3 lists the set of preclustered phonemes. This resulted in a set of 95 

phonemes with which to label the training set. 

Table 5.2: Table of labels for unmerged label set of 95 phonemes 

Number of Labels Labels 

95 & , &r , .pau , 2 , 3 , 3r , 4r , 9r , > , > Y , ? , ?* , @ , A, 
A: , C , D , E , Eax , I , Ix , K , N , S , T , U , V , * , a , al , 

aU , ai , b , be , cC , cCc , cCh , d , dZ , dc , d[ , d[c , d( , 
drc , e , e: , ei , f , g , gc , h , hs , i , i: , j , k , kH , kc , 

kh , 1 , m , n , nj , o , o: , oU , oax , p , pc , ph , r( , rr , s , 
sr , tS , tc , t[, t[H , t[c , t[c: , th , trc , ts , tsR , tsc, 

tsr , tsrc ,u,u: ,v,w,x,y, yax , z 

Table 5.3: Table of premerged labels within final set of 95 phonemes 

> Y >i ?* ?c E8 
I If K G bbH 
be be: ddr dZ dR dZH 
dc dZc d[ d[: d[H d[z ggH 
iih kc kc: 1 L 1: 1( 
m m: n n: n[ nr nj ng 
o 7 oU ow PPH 
pc pc: r(r(H rr r r+ 
s s: sr tS tsH 
t[H t[s t[c t[sc th t tR tSH 
trc trc: tsc tSc u uax 
yYy: zZ 

Table 5.1 shows the number of files present at each length given in seconds for which 
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results are analyzed in this chapter. Appendix A and Appendix B show the labeling con- 

ventions for the database used in this experiment as well as some statistics on phoneme 

occurrences. In addition Tables 5.4 - 5.5 give word examples corresponding to the re- 

spective labels. Some of the words illustrate the belief that merging of phonemes across 

languages is viable. Looking at Table 5.5 many words chosen as examples of the labels in 

the columns are very similar. Even though a linguist may detect the difference in pronun- 

ciation of and American ///in "loss" vs. the German /(/in "los", the question is whether 

an automatic phoneme-recognizer will be able to make such a distinction. If it cannot 

make the distinction, the two phonemes may be acoustically close enough to be merged 

and treated as a single speech unit. 
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Table 5.4: Labels with word examples 

LABEL German Word English Word 
& in character 
&r - oredered 
.pau - - 
2 - - 
3 - - 
3r - research 
4r - - 
9r - research 
> elektronik ordered 
>Y 
7 

neu Lloyd 

?* ; _ 

@ nähe interaction 
A - talk 
A: Firma - 
C ich - 
D - the 
E amerika reception 
Eax sehr - 
I ich recent 
Ix ich recent 
K groß - 
N streng mixing 
S streng should 
T - thought 
U und put 
V - - 
- - about 
a firma - 
al - I 
aU Frau out 
ai meine - 
b bin bin 
be bin bin 
cC - - 
cCc - - 
cCh - - 
d denn danger 
dZ Virginia subject 
dc denn danger 

d[ - - 
d[c - - 

d( - ordered 
drc - - 
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Table 5.5: Labels with word examples 

LABEL German word English word 
e - - 
e: leben - 
ei - phase 
f firma firm 

g gehen go 
gc gehen go 
h heiß hot 
hs - - 
i - - 
i: Klima research 

j Jahren years 
k - - 
kH - - 
kc Amerika America 
kh Amerika America 
1 lang long 
m Mitte middle 
n nun now 
nj - realizing 
0 gewöhnt - 
o: groß - 
oU - low 
oax vor - 
P - - 
pc purpur purple 
ph purpur purple 

r( - - 
rr gerade - 
s los loss 
sr - - 
tS Deutsch much 
tc elektronik electronic 

t[ - - 
t[H - - 
t[c - - 
t[c: - - 
th elektronik electronic 
trc - - 
ts zum - 
tsR - - 
tsc - - 
tsr - - 
tsrc - - 
u zu - 
u: gut juice 
V wir of 
w - way 
X - - 
y natürlich - 
yax hier - 
z so phase 
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5.2    Speech Recognition - Alignment 

The speech-recognition system used in this study employs neural networks for phonemic 

recognition, followed by a Viterbi search which time aligns the speech (wave) files with 

the labels. 

5.2.1    Neural Network based Phoneme Classification 

A neural network is used to assign scores relating the probability of seeing a given phoneme 

or speech unit at the input. The neural network classifiers used here are fully-connected, 

feed-forward networks trained using back-propagation with conjugate gradient optimiza- 

tion [4] using a mean squared error criterion. Such a neural network has three layers. 

Each node in the first layer corresponds to an input feature derived from the waveform. 

An equal number of frames from each of the phoneme classes are sampled according to 

the labeled database. In this thesis, a frame is defined to be a 6ms window of the dig- 

itized speech. The acoustic input is represented with a seventh order Perceptual Linear 

Predictive (PLP) model [39], yielding 8 coefficients (including one for energy). This rep- 

resentation is a modification of linear predictive coding taking into account knowledge 

about the human hearing mechanism. For each sampled frame, 56 (= 8 x 7) PLP coeffi- 

cients within a 156 msec window, centered on the frame to be classified, are computed and 

serve as input to the phonetic classifier. The sampling intervals are shown in Figure 5.1 

and have been derived from work done by Roginski [93] who experimented with different 

window sizes to find the optimal static representation of a frame to be classified. The 

objective is to provide substantial contextual information about the chosen frame to the 

network. The number of hidden nodes was derived experimentally for best performance. 

Each output node in the third layer corresponds to a phoneme or speech unit. 

-42 -12    0      12 42 78 
ms 

Figure 5.1:   Sampling intervals for the PLP features.   The solid boxes indicate the frames for 
which PLP coefficients are computed. Dashed boxes indicate skipped frames. 
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5.2.2    Aligning the Speech 

Acoustic features as described above are calculated every 6 ms. Thus, the network assigns 

95 phoneme category scores to each 6 ms time frame of the utterance, reflecting an estimate 

of the probability of seeing a phoneme at the input to the network. Figure 5.2 illustrates 

the alignment process, in which these output scores are computed for each incoming time 

frame creating a matrix of probability-like scores over time. 

ah n del 
SPEECH 

ah 
k -s . 
m s^ 
n 
del 
kcL 

/ah/n/dcl/ 

score = .23 

Wave file     Neural Network 
Time 

Figure 5.2: Automatic labeling of incoming utterance based on Viterbi search and neural network 
outputs. 

Speech is segmented into a time-aligned string of phonemes by using the optimal 

path through the outputs of the neural network. Duration and transition probabilities are 

derived from the hand-labeled files. Durations are represented as minimum and maximum 

duration corresponding to the 2nd and 90th percentile of a histogram computed over all 

training files for each of the phonemes. A Viterbi search * takes duration constraints and 

transition probabilities into account when searching for the optimal path. Let the string 

of time-aligned phonemes consist of the sequence of phonemes phj(j = 1,..., J). If we 

assume that phoneme phj spans frames Tj to Tj+i -1, the likelihood of phoneme phj with 

length Tj to Tj+i - 1 is then given by : 

Tj+i-l 

n pt(phi) (5.1) 

thanks to Mark Fanty for explaining his algorithm which we used here. 
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The duration constraints are used by inforcing a penalty when the segments are shorter 

or longer than the given duration limits. 

Shorter Segments: multiply score by L*shortpenalty, where L is the number of frames 

the segment is short of the lower limit. 

Longer Segments: multiply score by L * longpenalty, where L is the number of frames 

the segment is above the upper limit. 

Every time a transition is made from phoneme phj-i to phj, the score is multiplied by 

P{phj\phj-t), which may be scaled by a constant to achieve the correct balance between 

acoustic and language probabilities. Let qt{phj) be the score associated with a phoneme 

at time of transition including penalties, then the likelihood of the returned sequence of 

phonemes is given by: 

J 

qiphi) * II 9iphj)P(phj\phj-i) (5-2) 
3=2 

5.3    Speech Representation 

As explained in Chapter 3, the clustering of phonemes across languages is based on the 

premise that not all phonemes are of equal importance to the language identification task. 

In this section, we will derive the phoneme clusters used for classifying English vs. German 

by clustering phonemes, estimating the discrimination error at each level, and pruning the 

clustering tree. 

Clustering The clustering process is started by using the set of 95 phonemes as shown in 

Table 5.2. At each merger two phonemes are chosen which result in the maximal increase 

in the expected mutual information measure given by Equation 3.1. 

Mutual Information = ^p(y)p(z|y)foff(—TTTT") 

In practice, p(x\y) (the probability of seeing phoneme x after alignment given that the 

phoneme was labeled y) is an entry in the confusion matrix which is derived by aligning 



88 

utterances before clustering and comparing frame-based labels of the aligned files to the 

hand labeled files. Deriving the prior probability p(y) from the labeled files, the mutual 

information between the observed and actual phonemes can now be calculated. 

Merging of speech units is allowed while language classification does not fall below a 

threshold, set to the first estimated error before merging. This estimated error is based on 

statistics computed from the aligned files. Thus the distribution of sequence occurrence 

given by parameters u and s (Eq. 4.7) as defined in Chapter 3 can be estimated to include 

the probability of alignment. In order to know when a merge is disallowed, it is essential 

to have a good estimate of the language identification error. Assuming that the error is 

estimated correctly, we are able to prune the clustering tree such that the minimal error 

can be obtained. 

Error Estimation The error is estimated for the list of chosen sequences, by represent- 

ing their combined error as described in Chapter 3. Adding a word to a given list results 

in the following distributions for the language pair i = 1,2 (assuming independence of 

sequence occurrences): 

List ~ N(ui[l] + aui[2], st-[l]
2 + a2s,-[2]2) = N{m, a,) 

And their combined error is estimated as: 

2 

In theory there is no limit on the number of sequences used for discriminating between 

two languages. However, in practice, as the number of sequences increases, the amount 

of training data becomes insufficient to estimate occurrence frequencies accurately. Thus, 

the risk of overtraining exists. In order to avoid this, cross validation is performed on two 

halves of the training set. The number of allowed sequences in the list is limited by setting 

a threshold based on the error estimation corresponding to each individual sequence. 

Pruning Appendix C.l shows the order of clustering, Appendix C.2 and Appendix C.3 

show a detailed listing of allowed and disallowed merges, respectively. Using the expected 

mutual information measure for clustering, and language classification as criterion for 



89 

pruning the tree, 59 phoneme classes were determined as the optimal number of clusters. 

After the first encountered disallowed merge, an extra fourteen merges are gained. Ex- 

amples of disallowed merges include: The American English flapped /d/ vs. the German 

rolled /r/. While acoustically close, they yield too much discriminating information to 

be merged. The English /w/ does not occur in German. Even though it is acoustically 

close to /l/ occurring in both languages it is not merged because of its importance in 

discriminating the two languages, /n/ and /ng/ occurring in "ending" are not merged: 

/ng/ is more frequent in English than in German as expected due to its grammatical 

function in the English participle. The merges just mentioned are those which would have 

contributed most to an error increase. 

Results In order to evaluate the impact of clustering we compare frame-based results 

for the neural network and alignment accuracy before and after clustering. The neural 

networks trained to recognize 59 and 95 phonemes have 35 and 75 hidden nodes respec- 

tively. Results in Table 5.3 are reported in terms of frame based accuracy. The third 

column shows a 3% increase in accuracy for the merged phoneme set. The performance 

of the alignment for these 59 phoneme clusters compared to the previous result using 

95 phonemes is given in the fourth column. It can be seen that there is an increase in 

correct alignment after merging phonemes. The column labelled "grammar" indicates the 

languages used to derive the grammar for alignment purposes. Before merging phonemes, 

the grammar that is used does not seem to have any effect on either frame-based or post- 

alignment recognition accuracy. However, the bigram probabilities derived from English 

and German do improve alignment accuracy at the customized level of 59 phoneme classes 

from 19% to 25%. This improvement in the alignment is expected to be reflected in the 

language identification accuracy. 

5.4    Language Identification System 

In this section we will describe the language identification system. In Section 5.3 we have 

developed a set of speech units which were used to align the English and German speech as 

described in Section 5.2. These aligned files are used for building a language identification 
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Table 5.6: Summary of Results from Alignment 

Phoneme-classes Grammar Frame-based accuracy (%) Alignment accuracy (%) 

95 SIX 
ENGE 

16 
16 

15 
16 

59 SIX 
ENGE 

19 
19 

23 
25 

system in this section. 

5.4.1    System Design 

The implemented system will discriminate between English and German. This language 

pair was chosen because it is known in the community to be one of the most difficult pair 

to discriminate within the phonemically labeled languages in the OGI — TS database (a 

reflection of the linguistic similarities between these two strongly related languages). This 

chapter will describe a neural network implementation of the theoretical design developed 

previously; There are six essential steps in this process: 

1) Language-dependent clustering of phonemes 

2) Automatic alignment of utterances with phoneme-clusters 

3) Building of a database which records occurring sequences 

4) Feature selection 

5) Sequence spotting 

6) Language classification 

Figure 5.3 depicts a flowchart with implementation details. Both training and test data 

are automatically aligned with the specified set of tokens. From two halves of the aligned 

training data, two databases of the sequences occurring in the respective training sets are 

built. From the databases, a set of sequences is chosen as features to identify the aligned 

test data. Features are cross validated between the two halves of the training data. The 

next sections will explain how each of the steps in the flowchart was approached, and how 

problems were solved. 
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Train 

Data 
align 

■ ■ 

Aligned 

Data 

Test 
Data 

choose sequences 

sequence spotting 

align 

Figure 5.3: Flowchart of the Language Identification System. 

5.4.2    Sequence Selection 

Selecting sequences by using our theoretical error estimate allows us to add any number 

of features to the final list until the discrimination of the training set is estimated to be 

zero. However, there is no mechanism to prevent overtraining. Two methods to avoid 

overtraining are adopted: choosing a small set of features and cross validation which will 

be explained in Section 5.5.2. Figure 5.4 shows several curves indicating the theoretical 

estimate of the error as a function of the number of segments processed. Each performance 

curve corresponds to a given number of sequences as features.   It can be seen that the 
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Figure 5.4: Estimated error as a function of time and number of sequences used as features 

increase in performance when going from 10 to 100 features is much greater than the 

increase when going from 100 features to 200 features, a good indication that overtraining 

might occur as the number of features increases much above 100. Experimental results 

in Section 5.5.2 confirm this. In addition, we compared sets of features derived from files 

aligned with 59 phoneme classes against those aligned with 95 phonemes. After clustering 

we are able to select significantly more sequences with lower estimated error as shown in 

Figure 5.5. 

5.4.3    Sequence Spotting 

Sequence spotting is performed by representing all sequences in form of a tree. Thus, 

for each new incoming sequence from the incoming utterance a pointer into the tree is 

started. At the same time all existing pointers are either advanced in the tree if the branch 

matches the incoming segment label, or terminated if there is no match. Each branch of 

the tree is marked with a label signifying whether or not it constitutes the ending of a 

sequence within the tree. For all pointers which reach such an end, the frequency count 
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Figure 5.5: Plot of estimated error for each sequence corresponding to the sorted list. 

of the corresponding sequence is incremented. More than one sequence can end at a 

given time and more than one sequence can start at a given time. The advantage of a 

tree representation is clearly the time saved in evaluating sequences which have common 

prefixes. 

5.4.4    Language Identification 

We compare two methods of language classification. The first uses parametric statistics, 

while the second uses neural networks. Assuming normal distributions the first method is 

used as it was in Section 3.4 for estimating language identification error at each stage of 

merging. We use this method primarily to indicate the close relation between theoretical 
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estimation and true language identification. The second method using neural networks 

allows us to combine all features in a non-linear fashion, appropriately handling the co- 

occurrence, of features and making no assumption about the feature distribution. 
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Figure 5.6: Estimate and Actual Classification Error Probability as a Function of Number of 
Processed Speech Segments Using Statistical Approach. 

Statistics-based Language Classification Language classification is based on the oc- 

currence frequencies of selected sequences in the output of the first module. The statistical 

approach is consistent with the feature selection process. By assuming normal distribu- 

tions, we let y equal the weighted scalar product of the feature vector u and the weight 

vector a 

y = J2ajuj (5.3) 

where Uj is the frequency of sequence j in a given aligned file Then this file is classified 

as: 

1 
argmax{- 
Vielang     v27T<7; 

(5.4) 
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Figure 5.6 plots the fraction of correctly classified sequences for the English and Ger- 

man training set as a function of time. It is important to note that the theoretical 

prediction represents a valid estimate of the actual language classification error on the 

training set, as shown here. However, as the number of features increases this estimate 

is no longer valid in the same degree that co-occurrence increases. The theoretical model 

does not take this into account. This method is therefore constrained to using a small 

number of features. 

English German 

aN-1 
X 

aN 
X 

u(1)        u(2) u(N-1) u(N) 

Figure 5.7: Neural network based setup for language identification 

Non-linear Language Classification Since the normal assumption may not be ap- 

propriate, we have also used a non-linear neural network as classifier. Such a classifier is 

able to take correlation between features into account. For each of the sequences to be 
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spotted, the occurrence frequency of each selected sequence, normalized by the number of 

labels seen at the time of classification (possibly multiplied by the appropriate a) is used 

as a feature. This set is used to train a neural network in order to learn the discriminant 

function. 

5.5    Results 

In this section we wish to show that clustering of phonemes has advantages. 

1. We obtain better alignment with the merged phoneme classes. 

2. As a result, language identification improves. 

By decreasing the number of phonemes to be recognized the phoneme recognition accuracy 

and alignment were improved as shown in Section 5.2. Language identification is directly 

affected by this improvement. 

5.5.1    Statistics-based Language Classification 

Statistics-based language identification is performed with a small number of 30 features in 

order to suppress a high degree of co-occurrence. We expect deviation from our theoretical 

predictions to the extent that there are correlations between the features and that their 

distributions are not normal, since these assumptions were used for the calculation of the 

theoretical error. Appendix C.4 lists the selected sequences. It can be seen that there is 

a small degree of overlap between the feature strings. Figure 5.6 demonstrates that the 

theoretical estimate closely matches the actual error rate. This also validates the use of 

an upper limit given by the Bhattacharyya distance as opposed to the Bayes error which 

was shown to match closely in theory. Figure 5.8 plots the ratio of the Bhattacharyya 

distance with respect to the simplified distance measure (Eq. 3.13) used to estimate the 

discrimination error. The ratio goes to 1 as more sequences are added to the list of features 

and the simplified measure becomes increasingly accurate. Even for the first feature this 

measure is already reasonable (ratio of .88). Final results for discrimination based on the 

normal assumption are given in Table 5.7. 
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Figure 5.8: Ratio of complete to simplified Bhattacharyya distance measure as a function of the 
number of sequences in the list. 

Table 5.7: Error rates when classification assumes a normal distribution. 

Data Set Performance after N segments 
Language Set N=10 N=50 N=100 N=500 

English Train 0.15 0.20 0.13 0.08 

English Dev 0.11 0.11 0.16 0.10 

German Train 0.73 0.21 0.21 0.00 

German Dev 0.95 0.45 0.30 0.14 
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5.5.2    Non-linear Language Classification 

We train on features derived after having seen 300 phonemes of an utterance to build 

a representative statistic of the utterance. It was found that this performs better than 

training on features derived from less mature statistics at earlier points in the utterance. 

Another practical change to the system regards cross validation during sequence selection. 

It was found that the method does not generalize well from training to test set. The 

solution is to split the training set into two parts. In this case ordering of the sequences 

is performed on half the training set. Error estimates are calculated on both halves and 

compared. 
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Figure 5.9:   Classification Error Probability as a Function of Time Using the Neural Network 
Approach. 

These results show that language identification performance is best when using the 

neural network approach without weighting sequences and spotting for a set of 100 derived 

sequences. The first 30 are shown in Appendix C.4. These sequences were chosen out of a 

list of sequences up to length five. However, no sequences longer then length four occur in 

the feature set. Figure 5.9 shows the classification rate in identifying English and German 

as a function of the length (in seconds) of the observed utterance. 
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Data Set Performance after N seconds 

Language Set N=5 N=10 N=15 N=20 N=25 N=30 N=35 N=40 N=45 

English Train 0.27 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

English Test 0.11 0.05 0.16 0.11 0.11 0.11 0.11 0.11 0.05 

German Train 0.17 0.13 0.04 0.02 0.02 0.02 0.00 0.00 0.00 

German Test 0.45 0.30 0.25 0.25 0.26 0.21 0.26 0.15 0.22 

Table 5.9: Error rates using neural network without weighting of features (a,- = 1). 

Data Set Performance after N seconds 
Language Set N=5 N=10 N=15 N=20 N=25 N=30 N=35 N=40 N=45 

English Train 0.26 0.08 0.04 0.04 0.04 0.04 0.02 0.02 0.02 

English Test 0.11 0.16 0.11 0.16 0.11 0.11 0.05 0.05 0.05 

German Train 0.09 0.13 0.02 0.04 0.02 0.04 0.02 0.00 0.02 

German Test 0.35 0.25 0.20 0.15 0.21 0.16 0.11 0.05 0.06 
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Figure 5.10: Performance before clustering is inferior to performance after clustering. 

Results comparing approaches with (Table 5.8) and without using feature weighting 

(Table 5.9) were obtained. It can be seen that the best results are obtained without 

weighting the features. This makes sense since the weighting factors are not optimized 

over the complete set of features. In addition the choice of weights assumes independence 

of features and normal distributions. The independence assumption is particularly inac- 

curate, since the set of sequences and subsequences which make up the feature set are 

certainly correlated as is evident in Appendix C.4. Figure 5.10 shows the impact of the 

clustering level on the performance. A small improvement in language classification is 

evident. Figure 5.11 compares the identification capability of neural networks trained on 

feature vectors. Each entry in the feature vector represents the normalized occurrence 

frequency of a discriminating sequence in the file from which the vector is derived. From 

the training set of the files aligned with 95 phonemes, we have derived 17109 training 

vectors and 5837 test vectors. From the training set of the files aligned with 59 phonemes, 

we have derived 20850 training vectors and 7521 test vectors. In Figure 5.11 the percent- 

age of correctly identified feature vectors is plotted as a function of the size of the vector 

reflecting the number of sequences which are spotted.  It is an indication that using the 
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top 100 sequences selected from the files aligned with 59 phoneme classes gives optimal 

performance. It can also be seen that clustering of phonemes improves performance con- 

sistently. After clustering a higher performance can be obtained for a smaller number of 

features. The final neural network for discriminating English and German is based on 100 

features and has 11 hidden nodes using 59 phoneme classes to align the speech and 15 

hidden nodes using 95 phoneme classes to align the speech. 

NIST 1994 Evaluations The results obtained here compare favorably with results 

obtained in the research community on the OGI - TS database as shown in Table 5.5.2. 

Since 1994 some progress has been made improving on these results. It is however very 

difficult to compare to newer systems because they are either not tested on a common 

test set of they are not evaluated on a pairwise basis. Appendix D indicates which files 

were misrecognized by our system. The probability is 84% that Lincoln Lab's system is 

significantly better than our system and 98% that our system is significantly better than 

Lockheed's. Using the two tailed McNeemer test, the probability that our systems using 

95 or 59 phonemes make the same mistakes is 38%. They are not significantly different. 

Table 5.10: Comparative Results on standard NIST 1994 test set 

Test Site % correct 

Lincoln Labs 97 
OGI Y. Yan 92 
ITT 92 
OGI Berkling 92 
MIT 84 
Lockheed 76 

NIST 1996 Evaluations There are two reasons why we would like to report results for 

a subset of the 1996 NIST evaluations. First, we would like to show that the algorithm 

is not dependent on our derived set of tokens but is instead generalizable to any set of 

tokens. Second, these results are compared to those of Yonhong Yan who was the winner 

of the 1996 evaluations.  While the NIST 1994 evaluation contained monologue speech, 



102 

the data for the NIST 1996 evaluation contains conversational speech merged over several 

different databases. These were switchboard, king (wideband and narrowband) and the 

OGI - TS data. Out of the 22 languages supplied as training and test sets we are only 

concerned with the two languages, English and German. The training set consisted of 

896 English files and 877 German files. For the development test set 240 English files and 

240 German files were supplied, divided into parts of 80 files, each of which are 3, 10, 

and 30 seconds long. These files were aligned with the set of 40 English phonemes with 

46.8% accuracy. The optimal list of discriminating features, chosen based on the aligned 

training and development test sets, consisted of 200 sequences up to length 4. The neural 

network trained on these features had 73 hidden nodes and performed with 83% accuracy. 

The final test set contained 478 English and 80 German aligned files which are 30 seconds 

long. Table 5.5.2 shows the comparative results for our system and Yan's system. Using 

the two-tailed McNeemer test, it can be shown that the probabilities that the systems 

make the same errors classifying German and English are 61% and 39% respectively. 

Figure 5.12 shows the error curve for identifying German and English as a function of 

time. Even though our system is comparable to Yan's system, it should be pointed out 

that his system is based on a 22 language evaluation and was not specifically trained to 

discriminate the two languages English and German. 

Table 5.11: Comparative Results on standard NIST 1996 test set 

Lang. Error System 
EN 
GE 

5% 
11% 

(Yan) 
(Yan) 

EN 
GE 

3% 
15% 

(Berkling) 
(Berkling) 
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Figure 5.11: % Correct classification for neural netword classifier as a function of the number of 
features used. Results shown before (95 classes) and after (59 classes) clustering for test set of 
feature vectors. 
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Figure 5.12: The error curve for identifying German and English as a funcition of the time (in 
ms), where each phoneme segment is artificially set to 10ms. 
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5.5.3    Evaluating the Impact of Alignment 

We have shown that clustering phonemes across languages improves language identification 

in our system. We achieve this by improving our alignment and thus allowing a larger 

number of features to be derived. However, the results leave much room for improvement. 

In this section we want to study the impact that the bad alignment has on our language 

identification performance. 

In order to test the impact of the alignment accuracy on the algorithm presented we 

artificially create errorful "aligned" files by using the confusion matrix and the labeled 

files. Changing the degree of correct alignment on a segment-by-segment basis we cre- 

ate files that range from perfect alignment to an alignment with the same accuracy as 

obtained by the system. We test five degrees of alignment which are derived as follows. 

The original confusion matrix comparing substitutions between aligned and labeled files 

will be mutated. This is done by increasing the diagonal entries of the matrix by a given 

percentage while decreasing the off-diagonal values by the same percentage, thereby in- 

creasing the correct alignment. The labeled files are then recast into new labels with the 

probability given in the new matrix. The formal description of the process follows: let 

p(L) denote the probability of label L occurring in the labeled files. Let Q denote the 

matrix of confusion between the labeled and aligned files. Then q(L) is the probability of 

L occurring in the aligned files given Q and p. 

Table 5.12: Simulating Better Alignment. 

q(Newlabel) = Q(Newlabel\Oldlabel) * p(Oldlabel) 

where, 

Q(Newlabel\Oldlabel) = P(Newlabel\Oldlabel) + (^ ^oldlabel (N)P(x\Oldlabel))     ; Newlabel = Oldlabel 

Q(Newlabel\Oldlabel) = (1 - N)P(Newlabel\Oldlabel ) ; Newlabel ^ Oldlabel 
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We let N in Table 5.12 vary from 1.0 to 0.0 to increase the correct alignment. When 

N — 1.0 the original confusion matrix is used to create data which simulates the alignment 

which we currently have obtained with our system. The frame-based accuracy is 25% as 

given in Table 5.3 for this data, which was aligned with 59 phoneme units using a German- 

English grammar. When N = 0.0, the confusion matrix is the identity matrix and the 

simulated alignment is equal to the labeled files. Data is generated from the labeled files 

for each value of N and the same process of data-driven error estimation as followed in 

Section 5.4 is performed in order to automatically derive a list of sequences on which 

the language discrimination estimate is based. For the top 10 words, Table 5.13 shows 

different values of accuracy after alignment corresponding to the various levels for N. 

Table 5.13: Average Accuracy of phoneme classes corresponding to different N. N = 1.0 corre- 
sponds to the original aligned data with 25% accuracy after alignment. 

N Average Accuracy(%) 
0 100 
.2 85 
.6 55 
.8 40 

1.0 25 

After generating statistics on occurring sequences, a set of features is selected. We 

then perform language identification on an equally mutated test set of files. It was already 

shown that a theoretical estimate closely matches the actual performance on real data. 

In order to indicate how much improvement in the alignment is necessary for a desired 

performance we need only to plot the error curve calculated for the selected features at 

each level of N. For N = .8 Table 5.13 shows that the frame based accuracy of the 

alignment should be 40%. The corresponding curve in Figure 5.13 shows that such a 

level of accuracy in the alignment would enable us to obtain a significant improvement 

in language discrimination. Of course, this is a simplified model of misclassification. In 

practice, errors are much more correlated than in our model. These results are nevertheless 

suggestive of what can be achieved with better alignment of the data. 
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Figure 5.13: Effect of alignment on language identification error: for different alignment accu- 
racies, the classification rate is shown as a function of the number of phonemes in the classified 
utterance. 



Chapter 6 

Conclusion 

The original goal of the research was to demonstrate that one can build a language iden- 

tification system that is linguistically sound 1. At the same time our goal was to study 

the limits of language discriminability and combine theory with implementation to build 

a performance-oriented system of minimal complexity. Section 6.1 describes how we ac- 

complished these goals. In Section 6.2, we would like to show why we believe these 

contributions will be an important part of future systems. 

6.1    Summary of Thesis 

Although much progress has been made in the past few years, language-identification sys- 

tems generally tend to be engineered rather than scientifically designed. As a result such 

systems have not necessarily been linguistically motivated. In this thesis the subject was 

approached with the belief that features used to discriminate between languages should 

be linguistically valid. Our premise was that a practical implementation of such a design 

hinged on the development of a mathematical model to approximate language discrimina- 

tion. In our final system, we uniquely combined linguistic design, theoretical development 

and practical system implementation. 

It is a well-known fact that humans can identify their own language more quickly and 

reliably than can any automatic system available today. This fact lead us to attempt a 

partial reconstruction of the complex human process of language identification.  Even a 

'As an example, we are not using Japanese phonemes in order to discriminate between English and 

Spanish. 

107 
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"partial reconstruction" confronts us with pragmatic issues such as the consistent tradeoff 

between complexity and performance. The complexity of each component in the system 

should therefore be minimized. Minimization is examined at two levels. First, at the 

level of speech representation (Section 3.1) and second, at the level of feature extraction 

(Section 3.2 - 3.3). This results in the implementation of a "word"-spotting algorithm 

(Chapter 5). 

It has been shown in the past that good phoneme recognition directly affects the success 

of language identification [106]. In order to obtain good phoneme recognition, a meaningful 

phoneme representation is often sacrificed; for example choosing to decode speech with 

phoneme set from language A to discriminate between languages B and C because this 

results in the best performance. The goal in this thesis was to find a set of phoneme-like 

tokens to represent speech in a linguistically meaningful way while preserving performance 

(see also [52]). A token set of common phoneme-like speech units across languages was 

created by taking the union of phonemes from all of the languages that the system is 

trained on. The resulting complexity was systematically reduced. Since it is impractical 

to implement a language-identification system for each possible combination of tokens, this 

thesis introduced a theoretical estimate of language discrimination based on the different 

choices of token sets (Section 3.5). As a result, it is now possible to design a set of tokens 

that are detailed enough to capture language-specific phonemes and, at the same time, 

that are general enough to represent all language sounds in the system (Section 3.4). 

Compensating for the inaccuracies of token recognition and alignment is a significant 

research problem. In order to account for the variability of "Words" in the automatic 

token alignment, the degree to which the variability within language is less than the 

variability across languages is determined by statistical analysis (Sections E.l- E.5). A 

mathematical model was developed in this thesis to understand the impact of inaccurate 

automatic alignment on language discrimination (Chapter 4). This theory helped explain 

why modeling within-language variability may not improve the overall discrimination re- 

sults (Section 4.4). Our findings have held true for the implementation presented in this 

thesis (Section E.7). The final set of discriminating "words", each standing for a single 

sequence, seem to represent in part the grammatical inflections in the languages and their 
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phoneme inventory (Appendix C.4). Based on a perceptual study, these results seem to 

agree to a non-trivial extent with the way humans identify unknown languages. The final 

system design is depicted in Figure 6.1. The chosen modules, indicated by arrows, are 

flexible to capture the inherent and discriminating features of different languages. 

Language 

Phonetic Signal Representation 

Speech Signal 

Figure 6.1: Modules of the LID System chosen for this thesis 

6.2    Present and Future of Language Identification 

In this section we would like to show how system design has evolved in recent years and 

how we believe that the algorithms developed here conform to some requirements of the 

next-generation of language identification systems. 

6.2.1    Design Issues for Language Identification Systems 

One can imagine the complexity of an automatic language identification (ALI) system, 

outlined in Section 1.1.3, that incorporates language-dependent structural properties of 
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speech including phonotactics, syllable, sub-words and words. To minimize complexity, 

any system will be evaluated with respect to basic design criteria, including those given 

in Table 6.1, thus, such a "perfect" system may actually be poorly suited for some appli- 

cations. 

Table 6.1: General Evaluation Criteria of Language Identification Systems 

1) Performance 

2) System complexity 

3) Training requiring labeled data 

4) Extensibility 

Performance is one of the most important criteria for the evaluation of implemented 

systems, as evaluated in terms of the accuracy and speed of the ALL Performance is partly 

a function of the length of utterance needed to identify the language of the utterance. 

System complexity is also important, even if it may play a decreasing role in the future 

due to improved computing speed and larger number of available computers. Finally, 

there is a great need to minimize the requirements of labeled data to train a system. Even 

though the availability of larger databases has increased, data are not usually labeled at 

the phonemic level or even at the word level. The system must compensate for this. Recent 

advances in LID have addressed issues such as automatically labeling data with phoneme- 

like units [70]. Databases have grown from including four languages to ten, twenty, and 

more. Systems will most likely generalize to a large number of languages in the future. 

Yearly system evaluations are hosted by the National Institute for Standards in Tech- 

nology (NIST), where labs from all over the world are evaluated on a common task. From 

year to year this task has increased in complexity. The extended list of criteria for 1996 is 

shown in Table 6.2. The first criterion refers to task independence. While being an impor- 

tant criterion, performance figures may be deceptive and task dependent.   Even though 
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a system may have been engineered for a particular task, this same design may not be 

generalizable despite a good identification rate for a given task. The second criterion 

refers to the discrimination of similar languages. Because the number of languages to be 

identified will grow, their similarity tends to increase to the degree that they can even 

be considered dialects of one another. The new design criteria reflect applications which 

discriminate between a large number of languages and dialects by stating that systems 

should be robust enough to achieve uniform performance across all the languages to be 

identified. In the future, systems will be used in a variety of different tasks, including 

applications to improve robustness of speech recognition systems for dialect and accent 

detection. Preliminary systems are already in place [114]. 

Table 6.2: Evaluation Criteria of Language Identification Systems (NIST 1996) 

1) Task Independence 

2) Discrimination between Similar Languages 

3) Discrimination between Dialects 

4) Achieving Uniform Performance Across Languages 

6.2.2    This Thesis and the Future 

Some of the material presented in this dissertation is attractive by some of these NIST 

design criteria for 1996. Specifically: 

1. Task Independence 

The algorithms developed in this thesis are not dependent on any particular ap- 

plication. There are only two restrictions imposed on their application. First, the 

algorithm is only implemented for a two-class problem. However, one can easily 

extend the algorithm since all the statistical measures generalize to multiple classes. 
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Second, the classes to be discriminated are represented by streams of tokens. This 

is not a severe restriction in that most systems today represent speech in terms of 

. some sort of token (such as phonemes) before analyzing it. There is no restriction 

on the type of token used so long as the set of tokens are common across the classes 

to be discriminated. 

2. Discrimination between Similar Languages 

The algorithm presented in this thesis automatically selects features based on their 

frequency of occurrence and their distributions in the two classes to be discriminated. 

No restriction is imposed on the length of the sequence of tokens to be selected as 

a feature. This is why the system generalizes well to discriminate between similar 

languages. Some of the problems with similar languages may be the small number 

of features and the particular type of features that discriminate them. The large 

variance in language dependent structural features makes it difficult to choose the 

correct system design (ranging from phoneme-spotting to large vocabulary systems) 

by hand. The algorithm introduced in this thesis automatically selects features 

without restriction to solve the particular problems of any given language pair. 

3. Discrimination between Dialects 

Dialects refer to the words, language forms, pronunciations, and speech habits pe- 

culiar to people of specific geographic regions [14]. The reason our system is flexible 

enough for this type of application is similar to item 2 above because there is a fine 

line between similar languages and dialects. In addition, we provided the framework 

for automatically designing a token set to highlight the pronunciation differences of 

specific phonemes. 

4. Achieving Uniform Performance Across Languages 

Language identification systems in place today rely on a wide variety of features, 

ranging from phoneme occurrence, to phonotactics, to large vocabulary. Such sys- 

tems require a design choice for the type of feature to be made independently of the 

languages in the system. However, each language has inherent particularities such 

as the consonant-vowel structure of Japanese, the short but frequent grammatical 
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inflections in English, or the guttural fricatives in German (see Section 1.2.1). Mak- 

ing design decisions independent of the languages in the system may not allow the 

necessary flexibility needed to capture all the language specific features. In other 

words, languages vary to different degrees and a design that works for one language 

may not work for another. In this thesis, discriminating "words" of any length are 

selected from a representation of speech using customized tokens. This process is 

automatic and allows a flexible design appropriate for the specified languages in the 

system. 

LANGUAGE  DEPENDENT 

Apply Linguistic Knowledge 

Language A Language B Language C 

Vocabulary Vocabulary Vocabulary 

LANGUAGE 
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Figure 6.2: Modules of extended LID System The system consists of a phoneme recognizer, 
followed by an automatic alignment of the speech with the recognized phonemes. Structural 
features for each language are derived based on their discriminating sequences. 

The system introduced in this thesis can be generalized to any number of languages as 

shown in Figure 6.2. By discriminating a given language with respect to all other languages 

in the system, a vocabulary capturing both its inherent and discriminating structure can 

automatically be derived. Similarly, the application can be used in conjunction with the 

parallel approach to language identification. This is the most successful type of system 

implemented to date. In such a system, the utterance is decoded in parallel by several 

language dependent phoneme recognizers. When applying our algorithm to this setup, the 
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only change in the block diagram of Figure 6.2 is the use of language-dependent speech 

unit alignment. 

Although the resulting system does not currently perform as well as the very best 

systems for language identification [106, 116], we believe that it is interesting in its own 

right. As the accuracy of speech recognition improves, it may also be that a system such 

as ours improves more substantially than those based on, say, phonotactic statistics. It 

has recently been pointed out that the path to improved speech-recognition systems does 

not necessarily imply improved performance at every step along the way [12, 13]. Instead, 

some steps need to be taken even if they increase error rates; other criteria (such as 

robustness, elegance, or extendability) should be used to evaluate such steps. We believe 

the same to be true in language identification. Although the sytem proposed in this thesis 

does not improve on state-of-the-art performance, it introduces several novel capabilities 

which may be of importance in the long run. 
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Appendix A 

Labeling Conventions 
IPA, Worldbet, and OGIbet English Broad Phonetic Labels 

Center for Spoken Language Understanding ~ Oregon Graduate Institute of Science & Technology 

I PA Worldbet OGIbet Example Category 

11 i: iy beet 

i I ih bit Front 

e E eh bet Vowels 

a* fl ae bat 

t I.x ix roses 

» u_x ux suit Central 

3 ft ax above Vowels 

3 fc-0 to go 

V 5 pot (British) 

U u uw boot 

u U uh book Back 

A - ah above Vowels 

3 > ao caught 

d A aa father 

» 3r er bird Retro- 

V ftr axr butter flexes 

el ei «y bav 

al al ay bve Diph- 

ai >i oy bov thongs 

iu iU few 

ao aU air about 

OÜ o0 OB boat 

13 it here (British) 

ea et there (British) 

U3 uft poor (British) 

Ph ph P pan Voiceless 

t* th t tan Plosives 

k* kh k can 

b b b ban Voiced 

d d d dan Plosives 

K S S gander 

m B Di- me 

n a ll knee Nasals 

1 N °g sing 

'i th_( dx writer Flaps 

'd d_( dx rider 

! f f fine 

e T th thigh Voiceless 

3 s s sign Fricatives 

r S sh assure 

h h hh hope 

V V V vine 

a D dh thv Voiced 

z z z resign Fricatives 

3 Z zh azure 

*r ts ch church Affricates 

<fe dZ jh judge 

l 1 I lent Glides 

i 9r r rent 

J j y yes (approxi- 

w V w went mants) 
m 

n=* em bottom 

9 n= en button Syllables 

9 N= eng 

1, 1- el bottle 

IPA Worldbet OGIbet Example Category 

pc 

tc 

kc 

pel 

tel 

kcl 

_pan 

„tan 

can 

Voiceless 

Plosive 

Closures 

be 

dc 

gc 

bcl 

del 

gel 

_ban 

_dan 
_gander 

Voiced 

Plosive 

Closures 

tSc 
dZc 

chel 
jhcl 

_church 
judge 

Affricate 
Closures 

+ .epi epinthetic closure 

IPA Worldbet OGIbet Type of Diacritic 

t* _h -h aspirated 

_x centralized 

14 s dental 

.( flapped (consonant) 

_F fricated stop 
_?* q glottal onset 

2 ■? -q glottalized 

d' .1 lateral release 

i: _: -el lengthened 

d" _n nasal release 

e _- -n nasalized 

_NL .nitl not in the language 

f -j palatalized 

9 _r -r retroflexion 

1 _i less rounded 

3 _H more rounded 

3 _t voiced 

nd .0 voiceless 

.♦ - waveform cut off 

Wort dbet, as mod ified at 01 'JI 

-IP -fp filled pause 

_ln -In line noise corruption 

_bn background noise 

Worldbet OGIbet Non Speech Sound Item 

.bn .bn background noise 

.br .br breath noise 

.cough .cough cough 

.ct .ct clear throat 

.laugh .laugh laugh 

.In .In Hn noise 

.Is .Is lip smack 

.ns .ns human, not speech 

.3neeze .sneeze sneeze 

.tc .tc tongue click 

Worldbet, as modified at OGI 

.beep .beep beep 

-burp .burp burp 

■tt .fp filled pause 

.pau .pau pause or silence 

.sniff .sniff sniff 

-uu .unk unintelligible speech 

.vs .vs squeak, voice crack 

■ glot glot glottalization 

Figure A.l: Table of Worldbet symbols. 
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Appendix B 

Label Statistics 
Table B.l: Phoneme Frequencies in Labeled files 

LABEL Hindi German English Spanish Japanese Mandarin 

& 0.0061 0.0164 0.0280 0.0020 0.0003 0.0206 

&r 0.0000 0.0000 0.0041 0.0000 0.0000 0.0014 

.pau 0.1155 0.0853 0.0911 0.0924 0.0981 0.0912 

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0434 

3 0.0000 0.0000 0.0000 0.0098 0.0000 0.0000 

3r 0.0000 0.0000 0.0147 0.0000 0.0000 0.0000 

4r 0.0000 0.0000 0.0000 0.0000 0.0000 0.0162 

9r 0.0000 0.0000 0.0283 0.0000 0.0000 0.0000 

> 0.0154 0.0172 0.0087 0.0000 0.0000 0.0290 

>Y 0.0000 0.0041 0.0012 0.0000 0.0000 0.0000 

7 0.0009 0.0002 0.0004 0.0019 0.0024 0.0003 
7* 0.0021 0.0074 0.0122 0.0041 0.0073 0.0006 

® 0.0158 0.0062 0.0200 0.0001 0.0000 0.0049 

A 0.0000 0.0000 0.0164 0.0000 0.0000 0.0463 

A: 0.0000 0.0200 0.0000 0.0000 0.0000 0.0000 

C 0.0000 0.0230 0.0000 0.0000 0.0000 0.0000 

D 0.0000 0.0000 0.0192 0.0175 0.0000 0.0000 

E 0.0424 0.0747 0.0237 0.0290 0.0000 0.0267 

Eax 0.0000 0.0110 0.0000 0.0000 0.0000 0.0000 

I 0.0297 0.0490 0.0501 0.0044 0.0000 0.0128 

Ix 0.0027 0.0020 0.0140 0.0000 0.0000 0.0000 

K 0.0000 0.0197 0.0000 0.0050 0.0000 0.0000 

N 0.0022 0.0041 0.0087 0.0057 0.0004 0.0384 

S 0.0057 0.0143 0.0059 0.0010 0.0183 0.0186 

T 0.0000 0.0000 0.0057 0.0002 0.0000 0.0000 

U 0.0167 0.0200 0.0028 0.0009 0.0000 0.0000 

V 0.0000 0.0000 0.0000 0.0146 0.0000 0.0000 

up 0.0814 0.0000 0.0527 0.0000 0.0000 0.0000 

a 0.0627 0.0378 0.0000 0.0953 0.1201 0.0000 

al 0.0000 0.0000 0.0180 0.0015 0.0002 0.0000 

aU 0.0004 0.0069 0.0057 0.0000 0.0000 0.0132 

ai 0.0035 0.0200 0.0000 0.0000 0.0000 0.0192 

b 0.0185 0.0181 0.0132 0.0064 0.0066 0.0000 

bc 0.0191 0.0153 0.0120 0.0043 0.0058 0.0000 

cC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0161 

cCc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0188 

cCh 0.0000 0.0000 0.0000 0.0000 0.0000 0.0093 

d 0.0041 0.0358 0.0198 0.0000 0.0000 0.0000 

dZ 0.0121 0.0002 0.0051 0.0011 0.0065 0.0000 

de 0.0009 0.0267 0.0277 0.0000 0.0000 0.0000 

dec 0.0118 0.0000 0.0000 0.0135 0.0211 0.0000 

decc 0.0104 0.0000 0.0000 0.0081 0.0266 0.0000 

doo 0.0000 0.0000 0.0106 0.0000 0.0000 0.0000 

dre 0.0099 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table B.2: Phoneme Frequencies in Labeled files 

LABEL Hindi German English Spanish Japanese Mandarin 

e 0.0363 0.0000 0.0000 0.0899 0.0684 0.0000 

e: 0.0000 0.0086 0.0000 0.0000 0.0004 0.0000 

ei 0.0000 0.0000 0.0152 0.0000 0.0000 0.0149 

f 0.0045 0.0205 0.0155 0.0043 0.0018 0.0048 

g 0.0097 0.0184 0.0080 0.0034 0.0131 0.0000 

gc 0.0081 0.0153 0.0061 0.0022 0.0085 0.0000 

h 0.0189 0.0119 0.0100 0.0001 0.0088 0.0219 

hs 0.0000 0.0000 0.0000 0.0085 0.0000 0.0000 

i 0.0292 0.0000 0.0000 0.0574 0.0656 0.0000 

i: 0.0000 0.0085 0.0336 0.0000 0.0000 0.0305 

j 0.0146 0.0042 0.0067 0.0028 0.0150 0.0608 

k 0.0369 0.0000 0.0000 0.0274 0.0503 0.0186 

kH 0.0039 0.0000 0.0000 0.0000 0.0000 0.0048 

kc 0.0408 0.0109 0.0258 0.0273 0.0467 0.0183 

kh 0.0000 0.0110 0.0232 0.0000 0.0000 0.0000 

1 0.0228 0.0291 0.0308 0.0346 0.0003 0.0147 

m 0.0365 0.0305 0.0251 0.0360 0.0296 0.0139 

n 0.0303 0.0891 0.0586 0.0501 0.0650 0.0565 

nj 0.0000 0.0000 0.0001 0.0032 0.0000 0.0000 

o 0.0201 0.0014 0.0000 0.0713 0.1007 0.0000 

o: 0.0000 0.0059 0.0000 0.0000 0.0001 0.0000 

oU 0.0000 0.0000 0.0118 0.0000 0.0000 0.0353 

oax 0.0000 0.0027 0.0000 0.0000 0.0000 0.0000 

P 0.0137 0.0000 0.0000 0.0185 0.0025 0.0129 

pc 0.0124 0.0056 0.0133 0.0166 0.0021 0.0119 

ph 0.0000 0.0053 0.0133 0.0000 0.0000 0.0000 

roo 0.0034 0.0000 0.0000 0.0385 0.0284 0.0000 

rr 0.0335 0.0028 0.0000 0.0025 0.0000 0.0055 

s 0.0272 0.0432 0.0426 0.0612 0.0248 0.0044 

sr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0246 

tS 0.0059 0.0005 0.0042 0.0034 0.0066 0.0021 

tc 0.0000 0.0500 0.0423 0.0000 0.0000 0.0000 

tec 0.0242 0.0000 0.0000 0.0432 0.0436 0.0349 

tccH 0.0047 0.0000 0.0000 0.0000 0.0042 0.0094 

tccc 0.0271 0.0000 0.0000 0.0414 0.0471 0.0365 

tccc: 0.0001 0.0000 0.0000 0.0000 0.0057 0.0000 

th 0.0038 0.0404 0.0325 0.0024 0.0000 0.0000 

trc 0.0141 0.0000 0.0000 0.0000 0.0000 0.0000 

ts 0.0065 0.0079 0.0000 0.0000 0.0000 0.0179 

tsR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0055 

tsc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0147 

tsr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0127 

tsrc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0132 

u 0.0000 0.0012 0.0000 0.0249 0.0360 0.0149 

u: 0.0053 0.0041 0.0102 0.0000 0.0000 0.0000 

V 0.0000 0.0167 0.0145 0.0000 0.0000 0.0001 

w 0.0122 0.0000 0.0193 0.0040 0.0109 0.0437 

X 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000 

y 0.0000 0.0065 0.0000 0.0000 0.0000 0.0129 

yax 0.0000 0.0052 0.0000 0.0000 0.0000 0.0000 

z 0.0031 0.0073 0.0177 0.0000 0.0000 0.0000 
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Table B.3: Phoneme Frequencies in Aligned files 

LABEL Hindi German English Spanish Japanese Mandarin 

& 0.0029 0.0001 0.0000 0.0001 0.0039 0.0035 

&r 0.0015 0.0000 0.0000 0.0000 0.0019 0.0010 

.pau 0.0539 0.0418 0.0388 0.0424 0.0513 0.0622 

2 0.0012 0.0000 0.0000 0.0000 0.0016 0.0044 

3 0.0041 0.0019 0.0037 0.0051 0.0046 0.0025 

3r 0.0013 0.0000 0.0000 0.0000 0.0021 0.0025 

4r 0.0008 0.0000 0.0000 0.0000 0.0032 0.0068 

9r 0.0031 0.0000 0.0005 0.0000 0.0022 0.0007 

> 0.0208 0.0264 0.0301 0.0217 0.0177 0.0239 

>Y 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

?* 0.0108 0.0102 0.0100 0.0087 0.0121 0.0132 
7 0.0051 0.0025 0.0023 0.0027 0.0054 0.0079 

<0 0.0183 0.0155 0.0235 0.0178 0.0173 0.0196 

A 0.0049 0.0000 0.0000 0.0000 0.0018 0.0065 

A: 0.0111 0.0142 0.0098 0.0081 0.0100 0.0152 

C 0.0015 0.0057 0.0009 0.0012 0.0031 0.0023 

D 0.0016 0.0000 0.0000 0.0000 0.0024 0.0010 

E 0.0229 0.0308 0.0330 0.0292 0.0229 0.0252 

Eax 0.0007 0.0000 0.0000 0.0000 0.0007 0.0004 

I 0.0122 0.0127 0.0189 0.0094 0.0132 0.0075 

Ix 0.0031 0.0001 0.0001 0.0000 0.0032 0.0019 

K 0.0023 0.0019 0.0004 0.0003 0.0038 0.0038 

N 0.0046 0.0039 0.0040 0.0030 0.0044 0.0053 

S 0.0019 0.0031 0.0027 0.0020 0.0044 0.0072 

T 0.0005 0.0000 0.0000 0.0000 0.0005 0.0005 

U 0.0216 0.0286 0.0174 0.0226 0.0150 0.0166 

V 0.0055 0.0014 0.0019 0.0057 0.0022 0.0016 

up 0.0106 0.0052 0.0054 0.0066 0.0077 0.0061 

a 0.0292 0.0298 0.0234 0.0373 0.0371 0.0203 

al 0.0084 0.0180 0.0257 0.0096 0.0121 0.0151 

aU 0.0056 0.0056 0.0081 0.0025 0.0064 0.0112 

ai 0.0041 0.0000 0.0000 0.0000 0.0014 0.0051 

b 0.0131 0.0033 0.0065 0.0028 0.0047 0.0046 

be 0.0118 0.0034 0.0067 0.0027 0.0045 0.0042 

cC 0.0104 0.0057 0.0045 0.0033 0.0109 0.0208 

cCc 0.0095 0.0054 0.0047 0.0030 0.0116 0.0238 

cCh 0.0007 0.0003 0.0006 0.0002 0.0017 0.0068 

d 0.0031 0.0105 0.0108 0.0050 0.0049 0.0054 

dZ 0.0023 0.0004 0.0011 0.0004 0.0021 0.0016 

dc 0.0061 0.0127 0.0133 0.0068 0.0068 0.0092 

dec 0.0129 0.0109 0.0078 0.0134 0.0110 0.0072 

dece 0.0117 0.0082 0.0066 0.0118 0.0106 0.0060 

doo 0.0089 0.0068 0.0155 0.0159 0.0109 0.0057 

drc 0.0153 0.0124 0.0134 0.0100 0.0079 0.0107 
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Table B.4: Phoneme Frequencies in Aligned files 

LABEL Hindi German English Spanish Japanese Mandarin 

e 0.0495 0.0361 0.0386 0.0681 0.0355 0.0212 

e: 0.0028 0.0044 0.0025 0.0036 0.0024 0.0022 

ei 0.0029 0.0000 0.0000 0.0000 0.0027 0.0027 

f 0.0036 0.0000 0.0000 0.0000 0.0035 0.0016 

g 0.0136 0.0133 0.0134 0.0122 0.0094 0.0098 

gc 0.0009 0.0000 0.0000 0.0000 0.0013 0.0007 

h 0.0161 0.0205 0.0185 0.0135 0.0144 0.0310 

hs 0.0133 0.0104 0.0082 0.0224 0.0101 0.0056 

i 0.0200 0.0102 0.0066 0.0200 0.0110 0.0070 

i: 0.0264 0.0341 0.0396 0.0279 0.0301 0.0422 

j 0.0210 0.0140 0.0140 0.0236 0.0215 0.0326 

k 0.0459 0.0533 0.0461 0.0607 0.0541 0.0241 

kH 0.0097 0.0166 0.0225 0.0074 0.0106 0.0132 

kc 0.0597 0.0697 0.0706 0.0673 0.0673 0.0382 

kh 0.0023 0.0000 0.0000 0.0000 0.0025 0.0023 

1 0.0165 0.0136 0.0133 0.0200 0.0133 0.0118 

m 0.0116 0.0026 0.0024 0.0044 0.0072 0.0048 

n 0.0567 0.0962 0.0696 0.0713 0.0525 0.0732 

nj 0.0010 0.0000 0.0000 0.0000 0.0003 0.0000 

o 0.0245 0.0225 0.0176 0.0327 0.0338 0.0172 

o: 0.0011 0.0010 0.0001 0.0005 0.0019 0.0014 

oU 0.0076 0.0078 0.0104 0.0091 0.0131 0.0228 

oax 0.0004 0.0000 0.0000 0.0000 0.0008 0.0005 

P 0.0230 0.0193 0.0150 0.0273 0.0205 0.0153 

pc 0.0426 0.0459 0.0409 0.0490 0.0422 0.0370 

ph 0.0101 0.0151 0.0166 0.0105 0.0100 0.0109 

TOO 0.0008 0.0000 0.0000 0.0000 0.0019 0.0004 

rr 0.0168 0.0108 0.0143 0.0186 0.0086 0.0099 

s 0.0339 0.0669 0.0678 0.0624 0.0530 0.0341 

sr 0.0059 0.0108 0.0124 0.0079 0.0074 0.0259 

tS 0.0045 0.0064 0.0108 0.0038 0.0044 0.0048 

tc 0.0042 0.0018 0.0022 0.0004 0.0091 0.0053 

tec 0.0079 0.0011 0.0005 0.0024 0.0086 0.0031 

tccH 0.0021 0.0035 0.0037 0.0014 0.0025 0.0016 

tccc 0.0080 0.0012 0.0010 0.0025 0.0078 0.0033 

tccc: 0.0006 0.0004 0.0001 0.0002 0.0012 0.0007 

th 0.0009 0.0000 0.0000 0.0000 0.0032 0.0015 

trc 0.0080 0.0082 0.0101 0.0044 0.0053 0.0073 

ts 0.0046 0.0051 0.0028 0.0019 0.0064 0.0089 

tsR 0.0006 0.0000 0.0000 0.0000 0.0005 0.0024 

tsc 0.0012 0.0000 0.0000 0.0000 0.0021 0.0034 

tsr 0.0021 0.0015 0.0020 0.0010 0.0021 0.0069 

tsrc 0.0007 0.0000 0.0000 0.0000 0.0011 0.0042 

u 0.0028 0.0000 0.0000 0.0000 0.0049 0.0030 

u: 0.0019 0.0000 0.0000 0.0000 0.0013 0.0010 

V 0.0064 0.0150 0.0172 0.0090 0.0117 0.0066 

w 0.0127 0.0162 0.0295 0.0153 0.0138 0.0197 

X 0.0041 0.0018 0.0025 0.0039 0.0022 0.0012 

y 0.0021 0.0021 0.0022 0.0016 0.0028 0.0059 

yax 0.0007 0.0000 0.0000 0.0000 0.0002 0.0001 

z 0.0015 0.0011 0.0021 0.0009 0.0025 0.0025 
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Table B.5: Phoneme Frequencies after clustering to 59 phonemes (aligned) 

LABEL Hindi German English Spanish Japanese Mandarin 

& 0.0876 0.0164 0.1276 0.0119 0.0003 0.0654 

.pau 0.1155 0.0853 0.0911 0.0924 0.0981 0.0912 

4r 0.0000 0.0065 0.0000 0.0000 0.0000 0.0291 

> 0.0154 0.0199 0.0087 0.0000 0.0000 0.0290 

>Y 0.0000 0.0100 0.0012 0.0000 0.0001 0.0000 

? 0.0072 0.0433 0.0324 0.0060 0.0097 0.0009 

@ 0.0158 0.0171 0.0200 0.0001 0.0000 0.0049 

A 0.0000 0.0200 0.0164 0.0000 0.0000 0.0463 

C 0.0000 0.0230 0.0000 0.0000 0.0000 0.0000 

D 0.0053 0.0053 0.0294 0.0569 0.0361 0.0149 

E 0.0424 0.0747 0.0237 0.0290 0.0000 0.0267 

I 0.0297 0.0490 0.0501 0.0044 0.0000 0.0128 

Ix 0.0027 0.0020 0.0140 0.0000 0.0000 0.0000 

K 0.0000 0.0197 0.0000 0.0050 0.0000 0.0000 

N 0.0387 0.0346 0.0339 0.0416 0.0300 0.0523 

S 0.0246 0.0263 0.0159 0.0012 0.0271 0.0652 

T 0.0045 0.0205 0.0212 0.0107 0.0018 0.0048 

U 0.0167 0.0200 0.0028 0.0009 0.0000 0.0000 

a 0.0627 0.0378 0.0000 0.0953 0.1201 0.0000 

al 0.0035 0.0200 0.0180 0.0015 0.0002 0.0192 

aU 0.0004 0.0069 0.0057 0.0000 0.0000 0.0132 

b 0.0185 0.0181 0.0132 0.0064 0.0066 0.0000 

be 0.0191 0.0153 0.0120 0.0043 0.0058 0.0000 

cC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0161 

cCc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0188 

cCh 0.0121 0.0002 0.0051 0.0011 0.0065 0.0093 

dc 0.0009 0.0267 0.0277 0.0000 0.0000 0.0000 

dec 0.0118 0.0000 0.0000 0.0135 0.0211 0.0000 

dece 0.0284 0.0153 0.0061 0.0103 0.0351 0.0000 

doo 0.0034 0.0000 0.0106 0.0385 0.0284 0.0000 

e 0.0363 0.0000 0.0000 0.0899 0.0684 0.0000 

e: 0.0000 0.0086 0.0152 0.0000 0.0004 0.0149 

g 0.0097 0.0184 0.0080 0.0034 0.0131 0.0000 

hs 0.0000 0.0000 0.0000 0.0085 0.0000 0.0000 

i 0.0292 0.0000 0.0000 0.0574 0.0656 0.0000 

i: 0.0000 0.0085 0.0336 0.0000 0.0000 0.0305 

j 0.0146 0.0094 0.0067 0.0028 0.0150 0.0608 

k 0.0369 0.0000 0.0000 0.0274 0.0503 0.0186 

kH 0.0039 0.0110 0.0232 0.0000 0.0000 0.0048 

kc 0.0408 0.0109 0.0258 0.0273 0.0467 0.0183 

1 0.0228 0.0291 0.0308 0.0346 0.0003 0.0147 

n 0.0303 0.0891 0.0587 0.0533 0.0650 0.0565 

o 0.0201 0.0014 0.0000 0.0713 0.1007 0.0000 

oU 0.0000 0.0000 0.0118 0.0000 0.0000 0.0353 

P 0.0378 0.0000 0.0000 0.0617 0.0461 0.0478 

pc 0.0124 0.0056 0.0133 0.0166 0.0021 0.0119 

ph 0.0000 0.0053 0.0133 0.0000 0.0000 0.0000 

rr 0.0335 0.0028 0.0000 0.0025 0.0000 0.0055 

s 0.0272 0.0432 0.0426 0.0612 0.0248 0.0044 

tS 0.0059 0.0005 0.0042 0.0034 0.0066 0.0076 

tc 0.0001 0.0500 0.0423 0.0000 0.0057 0.0147 

tccH 0.0085 0.0404 0.0325 0.0024 0.0043 0.0094 

tccc 0.0271 0.0000 0.0000 0.0414 0.0471 0.0365 

trc 0.0141 0.0000 0.0000 0.0000 0.0000 0.0132 

ts 0.0065 0.0079 0.0000 0.0000 0.0000 0.0179 

tsr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0127 

V 0.0000 0.0167 0.0145 0.0000 0.0000 0.0001 

w 0.0122 0.0000 0.0193 0.0040 0.0109 0.0437 

z 0.0031 0.0073 0.0177 0.0000 0.0000 0.0000 



Appendix C 

English vs. German 

C.l    Clustering Trees 

£ a E   S 

-   =   3 

2 5 

(O n o 

1  

ü 
<—1—1 CO 

o 
CO 

—,              o 
~                     CM 

o1 
.a ■o' 

—1              © ^    < 

3 o 
I 

3 ZEi 

Figure C.l: Clustering of phonemes. The last shown merge represents the forbidden merge. 
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C.2    Merged Classes 
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Table C.l: Table of merged classes 

& - &r 3r 9r 2 3 .pau 4r y Y y: 
> oax > Y > i o: ? ?* ?c d dr 
@ Eax A A: C 
D V u uax u: E8 I If 
Ix KG N m m: 
Ssrh Tfx U 
a al ai aU 

bbH be be: cCh dZ dR dZH 

cC cCc d( r( r(H 
dcdZc d[ d[: d[H d[z d[c drc gc 
e e: ei ggH 
hs iih i: 
j yax k kH kh 
kc kc: 1 L 1: 1( n n: n[ nr nj ng 
o7 oil owl pPHt[ 
pc pc: ph pf rr r r+ 
s s: tS tsH tsR tc t[c: tsc tSc 
t[H t[s th t tR tSH t[c t[sc trc trc: tsrc 
ts tr tsr V 

w zZ 
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C.3    Disallowed Merges 

Table C.2: Disallowed merges for single phonemes. 

i,ih E,8 
a aU 

I,If Ix 
1,L,1:,1( w 

U o,7 
c z 

K,G hs 
b,bH V 

d[,d[:,d[H,d[z g,gH 
ts tsr 
k kc,kc: 

pc,pc: t[c 

Table C.3: Disallowed merges for phoneme classes. 

al,ai @,Eax 
e e:,ei 

j.yax &, ",9r,&r,3r,2,3 
4r,y 1: 

bc,bc: d,dr,?,?*,?c 
>,oax A,A: 

> Y,> i,o: oU,ow 
cC cCh,dZ,dR,dZH 

d(,r( rr 
tS.tsR cCh 
s,T,f u,u:,D,V 

trc,tsrc tc,t[c:,tsc 
sr,S,h s 
kH,kh t[H,th 

drc,gc,d[c dc,dZc 
m,m:,N n,n:,n[,nr,nj,ng 
t[,p,pH ph,pf 
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C.4    Word list to discriminate EN vs. GE 

Table C.4: The List of Words discriminating English vs. German. 

Word List Example Language(a) error 

doo rider EN(l.OOOOOO) 0.417390 

Un und GE(-0.628283) 0.433311 

n und GE(-0.132326) 0.437518 

a aber GE(-0.262205) 0.440138 
Ix ich EN(0.293439) 0.440718 
tc ts zu GE(-0.659480) 0.441602 
&; w wow EN(1.780642) 0.443074 
ts U n zunehmen GE(-2.005834) 0.448822 
e: doo ladder EN(2.173229) 0.450145 
.pau ? I C ..ich GE(-2.676625) 0.450492 
w & where EN(1.014912) 0.450633 
& e: and EN(2.099001) 0.451763 
C4r Becher GE(-2.768908) 0.451810 

U Und GE(-0.251789) 0.452168 
&dc led EN(1.296263) 0.452391 
a n and GE(-0.510496) 0.452703 

? U ..Und GE(-2.001755) 0.454155 
C tc tccH E Geschichte GE(-3.997612) 0.454308 
ts zu GE(-0.389870) 0.454719 
gES Geschichte GE(-2.621442) 0.455105 
n a nain GE(-2.607831) 0.455241 
AK mach GE(-1.355402) 0.456363 
K mach GE(-0.251271) 0.456574 
pc ph e: family EN(3.735772) 0.456640 
ts En verletzen GE(-4.165718) 0.456749 
e: C tc tccH echt GE(-4.952376) 0.457405 
C tc tccH nicht GE(-1.017309) 0.457442 
&bcb& about EN(2.625859) 0.457516 

ts check EN(0.548847) 0.457538 
tc ts U n zunehmen GE(-2.685595) 0.457641 

tc tS & check EN(1.631012) 0.457651 
TOTAL 
ESTIMATED 0.019 



Appendix D 

Results using Neural Network 

Implementation 

Correct Language 
Classified Language 

59 cl asses 95 classes 59 classes with weighting 
EN GE EN GE EN GE 

EN 
GE 

18 
2 

1 
18 

17 
4 

2 
16 

17 
5 

2 

15 

Table D.l: Number of files classified from test set. 

Classifier Misclassified Files 

59 classes 
German call 90 
German call 94 
English call 63 

59 classes with alpha 

German call 79 
German call 81 
German call 90 
German call 93 
German call 94 
English call 63 
EngUsh call 72 

95 classes 

German call 79 
German call 88 
German call 90 
German call 94 
English call 72 
English call 81 

Table D.2: Names of misclassified files from test set. 
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Appendix E 

Inexact Sequence Matching 

In this appendix we will discuss an extension to the algorithm implemented in Chapter 5. 

The aim is to build a system which is more robust and therefore generalizes better to 

previously unseen test data. By extending the model we want to improve generalization 

to test data in the face of factors such as pronunciation or dialect variability within a lan- 

guage, which gives rise to inaccurate alignment. In order to achieve this goal, sequences 

are matched in an inexact manner. In the following sections, we will motivate this exten- 

sion and describe the algorithm. Finally, we compare the results to the baseline system 

including only exact sequence matching. The algorithm studied in this appendix is a 

practical realisation of the ideas introduced in Chapter 4 and the hope is that it will be 

more successful in the practical setting than predicted by theory. 

E.l    Motivation 

In Section 5.5.3 we found that even a hard task such as the distinction between English 

and German can be accomplished perfectly with our techniques if no misrecognitions 

occur. In an attempt to approximate that result with limited recognition accuracy, we try 

to recover the occurrences of our target strings ("words") even when they are computed 

by misrecognitions. To do this, a "Word" is created by associating a set of sequences 

with each other by allowing for the possibility of misrecognition. The aim is to associate 
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sequences which cover the variability of a word within one language without sacrificing 

any discriminability across languages. The idea is illustrated with a simple example in 

Figure E.l. Shown are the phonemic representations of three speakers in German and 

English saying the same sentence in their respective languages. Notice that the boxes 

contain the same word pronounced differently by each speaker. 

Uh n t       I    C   z   e   h   eh uhn t German speaker 1 

German speaker 2 

German speaker 3 

Uh n   t       I    C   z    e    h   eh eh n t 

eh   11  t      I    C    z    e   h    eh eh n d 

* Und ich sehe und... 

And  I   see   and... 

VOCABULARY : und   and 

German:   /uh/n/t/   /eh/n/t/ 

English:  /ah/n/d/ /ah/m/d/ 

( ah n  dc J     *i    s    iy ah n  d English speaker 1 

English speaker 2 

English speaker 1 

( ah n dc )    ^    s    iy 
[ eh n dc j    ai    s    ;y 

( eh n   d 

[ah md 

Figure E.l: Example of speaker dependent pronunciations of same word. 

Either sequence /uh/n/tcl/t or /eh/n/tcl/t by itself is not sufficient to describe 

the language German. Treating both sequences as separate features is inadequate because 

a non-occurrence of one sequence may be misinterpreted to mean that the incoming ut- 

terance is not German. However, both sequences together describe the word "und" and 

discriminate German from English. The same is true for sequences /ah/n/dcl/d/ and 

/ah/m/dcl/d/ for English. The list of sequences can be though of as an OR function 

where each of the sequences within the "word" they define is not expected to occur in all 

utterances. However, ideally, the word as a whole occurs with uniform frequency in each 

file. Uniting both sequences to represent the words "und" and "and" respectively results 

in a mean occurrence of twice per file for the first two utterances and zero occurrence in 

the other language, resulting in complete discrimination. 
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But how much inaccuracy can be allowed before language discrimination is sacrificed 

by an overlap of pronunciations as depicted in Figure E.2? Adding /eh/n/dcl/d/ to the 

list of allowed pronunciations for German, may improve the recognition for German but 

not the discrimination from English because we now have created an overlap in pronunci- 

ations. In rapid speech one often mispronounces or partially pronounces a word. In this 

example the words "and" in English and "und" in German come very close to each other. 

Using real data, such overlapping pronunciations are prominent especially for shorter se- 

quences. By modeling the occurrence frequencies of sequences with normal distributions, 

the discrimination error between languages can be estimated. The algorithm discussed 

in this chapter will use the error prediction method developed in Chapter 3 and applied 

in Chapter 5 to allow inaccurate string matchings while limiting the degree of variability 

when the discrimination between two languages is sacrificed. 

German 

English 

Figure E.2: Example of pronunciations overlapping languages. 
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E.2    Terminology 

In order to specify sequences in an inexact manner we need to find a measure of allowed 

inaccuracy. If we imagine the space of all sequences partitioned as shown in Fig. E.3 then 

we define the following terms: 

Center The center sequence of a set of associated sequences, ie.   their representative 

sequence 

Radius The Radius defines the degree of allowed inaccuracy between a sequence and a 

Center. 

(    4   ^i 

^^   B \    y • J^   r 

Figure E.3: Space of All Sequences. A,B, and C represent the centers of the three sets. Each set 
is associated with a radius shown by the line. Sets may overlap. 
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The issue then becomes one of associating a set of sequences with each other, finding 

the appropriate Center to represent this set and defining a corresponding Radius. An 

optimal list of "words" is then derived similar to the list of words in the previous chap- 

ter by sorting them according to the estimated corresponding error and selecting the N 

most discriminating "words". Language identification is then performed by matching the 

predetermined set of Centers within the corresponding Radius and using the frequency 

counts as features. 

There are some research questions to be answered with respect to forming sets of 

sequences. We address these in three parts in the next sections. After describing the 

distance measure between sequences, I will discuss the weighting of each sequence within 

a word. The final important issue is the ordering in which the sequences are added to a 

word, because it will determine the number of sequences the final word encompasses. 

E.3    Distance Function 

Two sequences are associated with each other by a distance score. Distance scores be- 

tween two sequences are generally calculated using dynamic time warping (dtw). We will 

approach the derivation of the score in a two-step process. The first dtw-algorithm is 

frame based. The second one is segment based and builds on the first algorithm. 

The goal is to match two strings of tokens, both corresponding to the same utterance 

phonemically labeled by hand. The corresponding utterance has also been automatically 

aligned using the process described in Section 5.2. This alignment forms the string to 

be matched against the labeled data. Sequences are matched using a frame-based con- 

fusion matrix derived from the labeled and aligned files. Each entry [a, /] in the matrix 

corresponds to p(a\l), denoting the probability that frame Us classified as a by the neural- 

network phoneme recognizer described in Section 5.2.1. The cost c of a substitution of 
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label a for label 1 is derived from p(a\l). 

c[l-Ki] = -log\p(a\l)] (E.l) 

The distance score between the input sequence A of length j and a template sequence 

L of length i to be matched is then calculated using cost c according to the general 

principles of dynamic programming: 

C[L{, Aj] = max < 

C[I,-_i,A,-_i]   +c(L,-->A,-) 

C[Lt-_i,Aj]       +c{Li^Aj) (E.2) 

C[Li, Aj-i]       +c{Li -»• Aj) 

The score C in Equation E.2 relates the probability of matching an aligned sequence A 

to a labeled sequence L by taking the inverse of Equation E.l: 

P(A\L) = e-cfL'4 (E.3) 

This frame based dtw algorithm is now extended in order to reflect the bigram proba- 

bilities which were used during the alignment process (see Equation 5.1). In other words, 

probabilities of substitution, deletion or insertion of phonemes depend on the context. 

Given that sequence xy is observed in an aligned file, the probability that this sequence 

corresponds to the labeled segment ab is denoted by P(ab\xy). Similarly, if the sequence 

xy occurs in an aligned file, the probability that this sequence corresponds to the labeled 
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segments a is denoted by P(a\xy). In this case the probability that label y is an insertion 

depends on the context of a preceding label x. Similarly, if the sequence x occurs in an 

aligned file, the probability that b is deleted when the preceding label a was recognized as 

x, is denoted by P(ab\x). This results in the following definitions: 

P(sub2)    =P{ab\xy) 

P(del)      = P(ab\x) (E-4) 

P(ins)       = P{a\xy) 

Specifically, these values are calculated by dynamic time warping the labeled with the 

corresponding aligned file using the frame-based method described above. As a result one 

can obtain the number of occurrences where segments xy correspond to ab and the number 

of occurrences of xy. Then, P(ab\xy) = num(ab A xy)/num{xy). P(del) and P(ins) are 

calculated in the same manner. In order to compensate for the sparseness of data, these 

bigram values are interpolated with unigrams by a factor A. 

P(sub2)    =XP{ab\xy)   +(1 - X)P(a\x) * P(b\y) 

P(del)       = XP(ab\x)     +(l-X)P(a\x)*P{b\x) (E.5) 

P(ins)       = XP{a\xy)     +(1 - X)P{a\x) * P{a\y) 

The trust A that is given to the bigram probabilities P is expressed by this measure 

which is related to the weighted entropy or information gained about the source P. 

X = j + PlogP (E.6) 
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where P is any of P(ab\xy), P(ab\x) or P{a\xy). 7 can vary between 0.4 and 1.0 and 

denotes the maximum trust given to the bigrams. The corresponding graph of A as a 

function of P is depicted in Figure E.4 Intuitively, one can imagine if P is one or zero, the 

training set is consistent within itself. The bigram information can be trusted and the 

value of A is at its maximum. On the other hand if xy is aligned to ab only half the time, 

then there is an inconsistency in the data which may be due to the lack of data and is 

compensated for by emphasizing the unigram information. 

Y + P  LOG ( P )     =  Trust 

Confidence 

P = 0 p = l 

Figure E.4: Plot of confidence for bigram probability as a function of P(L\A). 

With these definitions, the dynamic time warping can now be defined with bigram 

probabilities to calculate the distance score ß between two sequences A of length i and L 

of length j. Initializing as follows, 

ß[L2,A2]   = -log(P(sub2)) 

ß[L1,A2]   = -log(P(ins)) 

ß[L2,A1]   =-log(P(del)), 

(E.7) 
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the recursive definition is given as: 

ß[Lj, Ai] = max 

/3[Lj_1,At_1]   +P(sub2) 

ßiLj-uAi]       +P(del) (E.8) 

ß[Lj,Ai-{\       +P(ins) 

The score leads to the probability that a given sequence A is a variation of the Center 

sequence L, as given in the next equation. Let M denote the Manhattan distance measure 

of the best paths between the labeled and aligned sequence; then the probability that 

aligned sequence A corresponds to the labeled sequence L, P{L\A) is given as: 

F(i|A)=expfc^l (E.9) 

Having derived P(L\A), we now have a measure of closeness for any two sequences. The 

Radius is measured with this score. It determines which sequences may be associated 

with each other to form the different pronunciations of a single sequence given by the 

Center. This measure will also serve as part of the sorting parameter by which sequences 

are sorted with respect to their distance from the center sequence. This parameter is 

important because it determines the order in which sequences are associated with the 

Center and thereby influences the size of the Radius. This issue will be addressed in 

more detail below. 

E.4    Weighting Factor 

In order to overcome some of the shortcomings of the alignment process I will attempt 

to reestimate the probability that a given aligned sequence A corresponds to a labeled 
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sequence L, where both A and L occur in the aligned files. By adding up all sequences 

in the aligned files and multiplying their occurrence frequency by P(L\A), one can ap- 

proximate the actual occurrence of the labeled sequence. If N is the number of sequences 

associated with a center L, then P(L) the estimated frequency occurrence of L as based 

on the frequency P(i) of N sequences in the aligned files: 

P(L) = f;P(I|i)P(0 (E.10) 

The number of sequences N, that are associated with a given Center is determined by 

estimating the discrimination error due to their union. In order to estimate the language 

discrimination error due to a given set, the Bhattacharyya distance is used as described 

in Section 3.2. As with exact sequences, inexact sequences are represented by a mean 

and variance. The distribution of a set of sequences is calculated in order to estimate 

the error due to their union. Assuming normal distribution of occurrence frequencies 

of sequences, we can add up the sum of random variables to create N(/j,,a), where \i 

and a here correspond to the mean and variance respectively of a "word" in terms of its 

associated sequences. 

ML  =EfrWK- (E11) 

This formulation assumes independence of features which was shown in Chapter 4 not 

to be true. Therefore the mean and variance are also directly reestimated from the data, 

treating the list of sequences to be associated as one. The Bhattacharyya distance is then 

applied to these mean and variances derived from the data given by: 



145 

i-H^l (E.12) 

This measure can be calculated at each successive level of associating sequences 1 

through N with the Center. Figure E.5 shows how sequences, A, with high probability 

P{L\A) = ß are associated with the Center, L, and ordered with respect to ß. With each 

newly associated sequence, according to the ordering, the new distribution parameters are 

calculated and the error is estimated. In Figure E.5, the minimal error, corresponding 

to maximal discrimination is achieved after adding Sequence 3 to the Center. This 

therefore corresponds to the allowed Radius. 

P • = p (Center I   Sequence i) 

Center     Sequence 2    Sequence 3           Sequence N 

Error R a d i u: 

—-   Number of Sequences 

u (Center) = P    u (Sequence2)    +   P 3 u (Sequence3 ) 

Figure E.5: Grouping sequences sorted by P(L\A) = ß. 
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E.5    Feature selection 

It was shown how sequences are related to each other by a distance score in Section E.3 

and how they are each weighted to represent a word in Section E.4. The error function 

determines to what degree of inaccuracy sequences may be matched without sacrificing 

discriminability. The next step is to find the words, sort them by their usefulness and 

choose a set of features among them. The ideal word is one that has a Radius which 

allows a reasonable amount of matches in every incoming utterance. By allowing all se- 

quences seen in the training set to be Centers, the system can evolve word representations 

automatically. For each such Center a list of N sequences is sorted by distance from the 

Center. For each sequence, including the Center, the error is estimated based on the 

combined set of sequences as seen in Figure E.5. The Radius is initialized to zero and 

is moved outward according to the ordered sequences. The final Radius is chosen at the 

point where a minimum discrimination error is estimated. This process of limiting the 

Radius reveals the importance of the order in which sequences are added to a set. This 

can be illustrated in a short example. Suppose the probability that the aligned sequence 

of labels /A/t/ corresponds to the labeled sequence /I/C/ is 50%. Suppose further the 

probability that the aligned sequence of labels /I/C/ corresponds to the labeled sequence 

/I/C/ is 30%. According to Formula E.10, the occurrence frequency U(/I/C/) of the la- 

beled sequence /I/C/ is estimated from the occurrence frequency of the aligned sequences 

u as: 

U(/I/C/) = .50 * u(/A/t/) + .10 * u(/I/C/) 

While this is true, sorting the sequences in this manner encourages using rare data 

thus causing bad agreement between training and test set and counteracting the goal of 

generalization. To clarify, assume that u{/A/t/) = 2 and u(/I/C/) = 300. The chances of 
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seeing the sequence /A/t/ in the test set are minimal compared to seeing /I/C/. In order 

to rectify this problem the sequences associated with the Center, L, are sorted according 

to P(L\A)P(A) thus taking the occurrence frequency of A into account. That is the 

ordering is changed to sort by P(L\A)P(A) while the weight of each sequence continues to 

be P(L\A). Since .50 * 2 = 1 and .10* 300 = 30, /I/C/ is a sequence which is much more 

important due to its frequency of occurrence. It is sorted closer to the Center, whereas 

/A/t/ is a rare sequence that will decrease in importance with respect to the Center. 

Now we have: 

U(/I/C/) = (.10 * u(/I/C/)) + + (.50 * u{/A/t/)) +  

The new order is much more robust because it encourages matching of sequences 

occurring frequently in the aligned files. 

E.6    Language Identification 

To identify the language of an utterance, we proceed as follows. Each incoming sequence 

is matched to all centers which are represented by a sequence and a radius. If the re- 

turned score of the match is within the given radius, then the corresponding word count is 

incremented. This method allows for more than one match at a time. All occurrence fre- 

quencies of these centers are normalized by the length of the utterance. Since the normal 

assumption that was used during error-estimation for clustering may not be appropriate, 

we use a non-linear neural network as classifier which is able to take co-occurrence of 

input features into account. For each of the sequences to be spotted the mean occurrence 

frequency of each selected sequence is used as a feature. A was set to 1.0 after varying it 

showed no significant impact on sequence selection. We train a neural network in order to 

learn the discriminant function based on features derived after having seen 300 phonemes 

to build a representative statistic of the utterance. 
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E.7    Results 

In Chapter 4 it is predicted that using inexact sequence matching should be no better 

than using exact sequence matching. This seems to be reflected in the results when using 

the method described in this chapter. When using the top 50 "words", the neural network 

is trained to discriminate between English and German with 11 hidden nodes. Evaluated 

on the same test set as used in Chapter 5 correct discrimination is 86%. The plot of 

language identification as a function of time is given in Figure E.6. After experimenting 

with a large number of choices for the various parameters and algorithms used for inexact 

matching, we now believe that this truly is a property of our system - as predicted by 

theory, inexact sequence matching does not improve over exact matching. The probability 

that the two systems using 59 phonemes for exact and inexact matching are the same is 

38% using the two tailed test which means that they are not significantly different. 

E 
a> 

0.8  - 

0.6  - 

0.4 

0.2 

~i r- 

german - exact 
english - exact 

english - inexact 
german - inexact 

0        5        10       15      20      25      30      35      40      45      50 
time (seconds) 

Figure E.6: Comparing results for exact vs. inexact string matching. Using 50 features results 
are plotted for the test set of German and English. 
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